+ ĐKXĐ: \(x^2-x+1\ne0\)
+ ĐKXĐ: \(x\ne1\), \(x^2+x+1\ne0\)
Chú thích: Mỗi dấu cộng là một phần
+ ĐKXĐ: \(x^2-x+1\ne0\)
+ ĐKXĐ: \(x\ne1\), \(x^2+x+1\ne0\)
Chú thích: Mỗi dấu cộng là một phần
Tìm điều kiện xác định của các biểu thức sau:
b) D = \(\left(\frac{3}{3x^2+1}+\frac{1}{4}\right):\frac{5x}{3-x}\)
c) C = \(\frac{5x+1}{3x-2}-\frac{x}{4}\)
Tìm điều kiện xác định của phương trình \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
a)x\(\ne\) 1 b)x \(\ne\) -1 c)x \(\ne\)+-1 d) x \(\ne\varnothing\)
Tìm tập nghiệp xác định và giải các phương trình sau:
a)\(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)
b)\(\frac{\left(x+2\right)^2}{2x-3}=\frac{x^2-10}{2x-3}\)
c)\(\frac{5x-2}{2-2x}+\frac{2x-1}{2}=1-\frac{x^2+x-3}{1-x}\)
d)\(\frac{5x-2}{3}+\frac{\left(x+1\right)\left(x-1\right)}{3x-1}=\frac{\left(x+2\right)\left(1-3x\right)}{9x-3}\)
Bạn nào giúp mình với ạ :<
bài 1:giải các pt sau:
a/\(\frac{1-x}{x+1}\)+3=\(\frac{2x+3}{x+1}\)
b/\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2+10}{2x-3}\)
c/\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
d/\(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
e/\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
f\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
1.Tìm điều kiện xác định của phương trình:
a) \(\frac{1}{x^{2^{ }}+1}\) -\(\frac{4x}{x}\) =0
b) \(\frac{1}{x^2-1}\) -2020
c) \(\frac{x^{2020}}{x-2019}\) + \(\frac{x-2021}{x^2+1}\)
Bài 1: Cho phân thức A = \(\frac{x^2+6x+9}{x^2-9}\)
a) Với giá trị nào của x thì giá trị của phân thức A xác định ?
b) Rút gọn phân thức A
c) Tính giá trị của biểu thức A tại x=9
Bài 7 : Tìm x
a) \(x^2-6x+5=0\) c)\(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
b) \(x\left(x+3\right)=\left(2x-1\right)\left(x+3\right)\) d) \(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3=0\)
e)\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\) f) \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
g) \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\) h) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
Bài 3 : Tìm điều kiện của m để phương trình sau là phương trình bậc nhất một ẩn
(2m - 1 )x + 3 - m =0
Bài 4 :Tìm giá trị của k sao cho:
a/ Phương trình: 2x + k = x – 1 có nghiệm x = – 2.
b) Phương trình: (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2
c/Phương trình: 2(2x + 1) + 18 = 3(x + 2)(2x + k) có nghiệm x = 1
d/ Phương trình: 5(m + 3x)(x + 1) – 4(1 + 2x) = 80 có nghiệm x = 2
Bài 10 :Tìm các giá trị của m, a để các cặp phương trình sau đây tương đương:
a) \(mx^2-\left(m+1\right)x+1=0\) và \(x-1=0\)
b) \(\left(x-3\right)\left(ax+2\right)=0\) và x +1 =0
Dạng 1: Phương trình bậc nhất
Bài 1: Giải các phương trình sau :
a) 0,5x (2x - 9) = 1,5x (x - 5)
b) 28 (x - 1) - 9 (x - 2) = 14x
c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x
d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2
e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\)
f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\)
g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\)
h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\)
i) \(\frac{x-1}{2}+\frac{x+3}{3}=\frac{5x+3}{6}\)
j) \(\frac{x-3}{5}-1=\frac{4x+1}{4}\)
Dạng 2: Phương trình tích
Bài 2: Giải phương trình sau :
a) (x + 1) (5x + 3) = (3x - 8) (x - 1)
b) (x - 1) (2x - 1) = x(1 - x)
c) (2x - 3) (4 - x) (x - 3) = 0
d) (x + 1)2 - 4x2 = 0
e) (2x + 5)2 = (x + 3)2
f) (2x - 7) (x + 3) = x2 - 9
g) (3x + 4) (x - 4) = (x - 4)2
h) x2 - 6x + 8 = 0
i) x2 + 3x + 2 = 0
j) 2x2 - 5x + 3 = 0
k) x (2x - 7) - 4x + 14 = 9
l) (x - 2)2 - x + 2 = 0
Dạng 3: Phương trình chứa ẩn ở mẫu
Bài 3: Giải phương trình sau :
\(\frac{90}{x}-\frac{36}{x-6}=2\) | \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\) |
\(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\) | \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\) |
\(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\) | \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\) |
\(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\) | \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\) |
Giải các PT sau :
a,\(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{\left(x+2\right)\left(x-2\right)}\)
b,(2 - 3x) (x + 11) = (3x - 2) (2 - 5x)
c,\(\frac{3x-2}{6}-5=\frac{3-2\left(x+7\right)}{4}\)
d,\(\frac{x}{x-3}+\frac{x}{x +1}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
e,\(\frac{x+1}{5}+\frac{x+2}{4}=\frac{x+3}{3}+\frac{x+4}{2}\)
bài 1:giải các phương trình sau:
a/\(\frac{1-x}{x+1}\)+3=\(\frac{2x+3}{x+1}\)
b/\(\frac{\left(x+2\right)^2}{2x-3}\)-1=\(\frac{x^2+10}{2x-3}\)
c/\(\frac{1}{x+1}\)-\(\frac{5}{x-2}\)=\(\frac{15}{\left(x+1\right)\left(2-x\right)}\)
d/\(\frac{1-6x}{x-2}\)+\(\frac{9x+4}{x+2}\)=\(\frac{x\left(3x-2\right)+1}{x^2-4}\)
e/\(\frac{12}{1-9x^2}\)=\(\frac{1-3x}{1+3x}\)-\(\frac{1+3x}{1-3x}\)
f/\(\frac{x+4}{x^2-3x+2}\)+\(\frac{x+1}{x^2-4x+3}\)=\(\frac{2x+5}{x^2-4x+3}\)
bài 2:tìm giá trị của m sao cho:
a/phương trình(2x+1)(9x+2m)-5(x+2)=40 có nghiệm x=2
b/phương trình \(^{x^3}\)+\(^{mx^2}\)-4x-4=0 có một nghiệm x =1