A=(xy2+xy−x−yx2+xy) :
A=( \(\dfrac{x}{y\left(x+y\right)}\) - \(\dfrac{x-y}{x\left(x+y\right)}\)) : (\(\dfrac{y^2}{x\left(x-y\right)\left(x+y\right)}\)+\(\dfrac{1}{x+y}\)) : \(\dfrac{x}{y}\)
A=\(\dfrac{x^2-y\left(x-y\right)}{xy\left(x+y\right)}\) : \(\dfrac{y^2+x\left(x-y\right)}{x\left(x-y\right)\left(x+y\right)}\) : \(\dfrac{x}{y}\)
A = \(\dfrac{x^2-xy+y^2}{xy\left(x+y\right)}\) : \(\dfrac{y^2-xy+x^2}{x\left(x-y\right)\left(x+y\right)}\):\(\dfrac{x}{y}\)
A = \(\dfrac{x^2-xy+y^2}{xy\left(x+y\right)}\). \(\dfrac{x\left(x-y\right)\left(x+y\right)}{x^2-xy+y^2}\):\(\dfrac{x}{y}\)
A = \(\dfrac{x-y}{y}\) : \(\dfrac{x}{y}\)
A = \(\dfrac{x-y}{x}\)
A= 1 - \(\dfrac{y}{x}\)>1
=> y/x <0
=> xy<0 , x+y khác 0