a) P + (x2 - 2y2) = x2 - y2 + 3y2 - 1
⇔ P = (x2 - y2 + 3y2 - 1) - (x2 - 2y2)
⇔ P = x2 + 2y2 - 1 - x2 + 2y2
⇔ P = 4y2 - 1
b) Q - (5x2 - xyz) = xy + 2x2 - 3xyz + 5
⇔ Q = (xy + 2x2 - 3xyz + 5) + (5x2 - xyz)
⇔ Q = xy + 2x2 - 3xyz + 5 + 5x2 - xyz
⇔ Q = xy + 7x2 - 4xyz + 5
a) P + (x2 – 2y2) = x2 – y2 + 3y2 – 1
P = (x2 – y2 + 3y2 – 1) - (x2 – 2y2)
P = x2 – y2 + 3y2 – 1 - x2 + 2y2
P = x2 – x2 – y2 + 3y2 + 2y2 – 1
P = 4y2 – 1.
Vậy P = 4y2 – 1.
b) Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5
Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)
Q = xy + 2x2 – 3xyz + 5 + 5x2 – xyz
Q = 7x2 – 4xyz + xy + 5
Vậy Q = 7x2 – 4xyz + xy + 5.
a) P + (x2 – 2y2) = x2 – y2 + 3y2 – 1
P = (x2 – y2 + 3y2 – 1) – (x2 – 2y2)
P = x2 – y2 + 3y2 – 1 – x2 + 2y2
P = x2 – x2 – y2 + 3y2 + 2y2 – 1
P = 4y2 – 1
b) Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5
Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)
Q = xy + 2x2 – 3xyz + 5 + 5x2 – xyz
Q = 7x2– 4xyz + xy + 5