Sai rồi,phải là:\(17^{1414}\)=\(17^{1412}.17^2=\left(17^4\right)^{353}+289=\left(...1^{353}\right)+289=\left(...1\right)+289=...0.\)
\(17^2\equiv9\left(mod10\right)\)
\(17^7\equiv3\left(mod10\right)\)
\(17^5\equiv7\left(mod10\right)\)
\(17^{10}\equiv9.7=63\equiv3\left(mod10\right)\)
\(17^{100}\equiv3^{10}\equiv9\left(mod10\right)\)
\(\Rightarrow17^{1414}=17^2.17^7.17^{100}.17\equiv9.3.3.17=1377\equiv7\left(mod10\right)\)
Vậy chữ số tận cùng là 7.