\(x+6y+2xy+2=0\\ \\ < =>x.\left(1+2y\right)+3.\left(1+2y\right)-1=0\\ \\ < =>\left(1+2y\right).\left(x+3\right)=1\)
mà x;y nguyên => 1+2y và x+3 là ước của 1 rồi giải....
\(x+6y+2xy+2=0\\ \Leftrightarrow x\left(1+2y\right)+3\left(1+2y\right)-1=0\\ \Leftrightarrow\left(1+2y\right)\left(x+3\right)=1\)
\(\cdot\left\{{}\begin{matrix}1+2y=1\\x+3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=0\\x=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-2\end{matrix}\right.\left(TM\right)\)
\(\cdot\left\{{}\begin{matrix}1+2y=-1\\x+3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=-2\\x=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=-4\end{matrix}\right.\left(TM\right)\)
Vậy ...