Vì `x+1;x+2y;3y+3` là `1` CSC `=>2x+4y=x+1+3y+3<=>x=4-y` `(1)`
Vì `x+1;y+1;3y-1` là `1` CSN `=>(y+1)^2=(x+1)(3y-1)` `(2)`
Từ `(1);(2)=>y^2+2y+1=(4-y+1)(3y-1)`
`<=>y^2+2y+1=-3y^2+y+15y-5`
`<=>[(y=3),(y=1/2):}`
`=>[(x=1),(x=7/2):}`
Vì `x+1;x+2y;3y+3` là `1` CSC `=>2x+4y=x+1+3y+3<=>x=4-y` `(1)`
Vì `x+1;y+1;3y-1` là `1` CSN `=>(y+1)^2=(x+1)(3y-1)` `(2)`
Từ `(1);(2)=>y^2+2y+1=(4-y+1)(3y-1)`
`<=>y^2+2y+1=-3y^2+y+15y-5`
`<=>[(y=3),(y=1/2):}`
`=>[(x=1),(x=7/2):}`
Cho 3 số x, y, z theo thứ tự lập thành 1 CSN. 3 số x, y-4, z theo thứ tự lập thành 1 CSN. Và các số x, y-4, z-9 theo thứ tự lập thành 1 CSC. Tìm x, y, z
Cho bốn số a,b,c,d biết rằng a,b,c theo thứ tự đó lập thành một cấp số nhân công bội q>1; còn b,c,d theo thứ tự đó lập thành cấp số cộng. Tìm q biết rằng a+d=14 và b+c=12. Giúp mình với mng ơi <3
Biết rằng 3 số x, y, z lập thành một cấp số nhân và ba số x, 2y, 3z lập thành một cấp số cộng. Tìm công bội của cấp số nhân ?
cho ba số nguyên theo thứ tự lập thành một cấp số nhân. Nếu tăng số hạng thứ hai thêm 9 đơn vị thì chúng lập thành cấp số cộng. Nếu tăng số hạng thứ hai thêm 2 đơn vị và số hạng thứ ba thêm 18 đơn vị thì chúng lập thành cấp số nhân. Tổng của ba số đó bằng
1. Tìm \(x\) để 3 số \(\left\{{}\begin{matrix}a=x+1\\b=3x-2\\c=x^2-1\end{matrix}\right.\) lập thành cấp số cộng.
2. Tìm số hạng đầu, công sai, số hạng thứ 15 và tổng 15 số hạng đầu tiên của cấp số cộng với:
\(\left\{{}\begin{matrix}u_1+u_5-u_3=10\\u_1+u_6=17\end{matrix}\right.\)
Chứng minh rằng: x,y,z là cấp số nhân khi \(\dfrac{2}{y-x}\), \(\dfrac{1}{y}\), \(\dfrac{2}{y-z}\) là cấp số cộng.
Một cấp số cộng và một cấp số nhân có số hạng thứ nhất bằng 5, số hạng thứ hai của cấp số cộng lớn hơn số hạng thứ hai của cấp số nhân là 10, còn các số hạng thứ 3 bằng nhau. Tìm các cấp số ấy ?
1) Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên np (p là một
số tự nhiên). Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với n bằng:
A. n p B. n > p
C. n=p D. n=1
2) Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên np ( p là một
số tự nhiên). Ở bước 2 ta giả thiết mệnh đề A(n) đúng với n = k. Khẳng định nào sau đây là đúng?
A. k > p B. k p
C. k = p D. k < p
3) Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên np (p là một số tự nhiên), ta tiến hành hai bước:
Bước 1, kiểm tra mệnh đề A(n) đúng với n=p
Bước 2, giả thiết mệnh đề A(n) đúng với số tự nhiên bất kỳ n=kp và phải chứng minh rằng
nó cũng đúng với n=k+1
Trong hai bước trên:
A. Chỉ có bước 1 đúng. B. Chỉ có bước 2 đúng.
C. Cả hai bước đều đúng. D. Cả hai bước đều sai.
4) Cho dãy số( un )là dãy số tăng. Trong các mệnh đề sau, mệnh đề nào đúng?
A. Mệnh đề un+1>un,nℕ* C.Mệnh đề un+1<un,nℕ*
B. Mệnh đề un+1un,nℕ* D. Mệnh đềun+1un,nℕ*
5) Cho dãy số (un) là dãy số bị chặn. Trong các mệnh đề sau, mệnh đề nào đúng?
A. Mệnh đề m<un< M, nℕ* B. Mệnh đề mun M, nℕ*
C. Mệnh đề un M, nℕ* D. Mệnh đề un M, nℕ*
6) Cho dãy số (un) là dãy số bị chặn dưới bởi số m. Trong các mệnh đề sau, mệnh đề nào đúng?
A. Mệnh đề un m, nℕ* B. Mệnh đề un m, nℕ*
C. Mệnh đề un> m, nℕ* D. Mệnh đề un< m, nℕ*
7) Công thức nào sau đây là đúng với cấp số cộng có số hạng đầu u1, công sai d?
A. un = un + d B. un = u1+ (n+1)d
C. un = u1 – (n–1)d D. un = u1 + (n–1)d
8) Cho dãy số (un), biết un=3n. Số hạng un+1 bằng:
A. Bằng 3n.3 B. Bằng3n+3
C. Bằng 3n+1 D. Bằng 3(n+1)
9) Cho dãy số( nn) biết un=1n+1. Khi đó u10bằng:
A. Bằng111 B. Bằng 11
C. Bằng 110 D. Bằng 10
10) Cho cấp số nhân -4,x,-9 . Hãy chọn kết quả đùng trong các kết quả sau:
A. x=-36 B. x=6
C. x=36 D. x=-6,5
11) Cho dãy số (un )biết un =3n2+1 . Trong các mệnh đề sau, mệnh đề nào đúng?
A. un bị chặn dưới.
B. unbị chặn trên.
C. un bị chặn
D. un không bị chặn.
12) Cho cấp số cộngu1=-3, u6=27 . Công sai của cấp số cộng đó là:
A. 5 B. 6
C. 7 D. 8
13) Cho cấp số cộng u1=3, u8=24 . Công sai của cấp số cộng đó là:
A. 3 B. 4
C. -3 D. 5
14) Cho cấp số cộng u1=-0,1,d=0,1 . Số hạng thứ 7 của cấp số cộng đó là:
A. 1,6 B. 0,5
C. 6 D. 0,6
15) Viết 5 số xen giữa hai số 25 và 1 để được CSC có bảy số hạng
A. 21; 17; 13; 9; 5 B. 21; -17; 13; -9; 5
C. -21; 17; -13; 9; 5 D. 21; 16; 13; 9; 5
16) Xác định x để 3 số : 1–x;x2; 1+x lập thành một cấp số cộng?
A. Không có giá trị nào của x B. x = ±2
C. x = ±1 D. x = 0
17) Cho dãy số 12;b;2. Chọn b để dãy số đã cho lập thành cấp số nhân?
A. b = –1 B. b = 1
C. b = 2 D. Không có giá trị nào của b
18) Cho cấp số nhân:-15;a;-1125. Giá trị của a là:
A. a=15 B. a=125
C. a=15 D. a=5
19) Cho dãy số: –1; x; 0,64. Chọn x để dãy số đã cho lập thành cấp số nhân?
A. Không có giá trị nào của x B. x = –0,008
C. x = 0,008 D. x = 0,004
20) Cho dãy số(un )biết un=nn+1. Trong các mệnh đề sau, mệnh đề nào đúng?
A. un bị chặn dưới. B. un bị chặn trên.
C. un bị chặn. D. un không bị chặn.
21) Cho Sn=112+123+134+......+1n.(n+1) với nℕ* Mệnh đề nào sau đây đúng?
A. Mệnh đề S3= 14 B. Mệnh đề S2=23
C. Mệnh đề S2=16 D. Mệnh đề S3=112
22) Cho dãy số(un )biết un=1+n2n+1. Số 815 là số hạng thứ bao nhiêu?
A. 8 B. 6
C. 5 D. 7
23) Cho dãy số: –1; 1; –1; 1; –1; … Khẳng định nào sau đây là đúng?
A. Dãy số này không phải là cấp số nhân B. Số hạng tổng quát un =1n =1
C. Dãy số này là cấp số nhân có u1 = –1, q = –1 D. Số hạng tổng quát un= (-1)2n .
24) Cho cấp số nhân (un )với u1=-12, u7 = –32. Tìm q ?
A. q=12 B. q=2
C. q =4 D. q=1
25) Cho cấp số nhân (un )với u1 = 3, q = –2. Số 192 là số hạng thứ mấy của (un )?
A. Số hạng thứ 5 B. Số hạng thứ 6
C. Số hạng thứ 7 D. Không là số hạng của cấp số đã cho.
26) Cho cấp số nhân có u2=14,u5=6 . Tìm q vàu1 .
A. q=12 ;u1=12 B. q =-12 ;u1=-12
C. q =4 ;u1=116 D. q =-4 ;u1=-116
27) Cho cấp số cộng: –2 ; –5 ; –8 ; –11 ; –14 ; … Tìm d và tổng của 20 số hạng đầu tiên?
A. d = 3; S20 = 510 B. d = –3; S20= –610
C. d = –3; S20 = 610 D. d = 3; S20 = 610
28) Cho dãy số (un )với un =7-2n. Khẳng định nào sau đây là sai?
A. 3 số hạng đầu của dãy: u1=5; u2=3; u3=1
B. Số hạng thứ n + 1=un+1=8-2n
C. Là cấp số cộng có d = – 2
D. Số hạng thứ 4: u4=-1
29) Cho dãy số (un ) có un=1n+2. Khẳng định nào sau đây sai?
A. là cấp số cộng có u1=12;un =1n+2
B. là một dãy số giảm dần
C. là một cấp số cộng
D. bị chặn trên bởi M = 12
30) Cho (un) có :u1=-0,1;d=1 . Khẳng định nào sau đây là đúng?
A. Số hạng thứ 7 của cấp số cộng này là: 0,6
B. Cấp số cộng này không có hai số 0,5 và 0,6
C. Số hạng thứ 6 của cấp số cộng này là: 0,5
D. Số hạng thứ 4 của cấp số cộng này là: 3,9
Ba số có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân, hoặc là các số hạng thứ hai, thứ 9 và thứ 44 của một cấp số cộng. Hỏi phải lấy bao nhiêu số hạng đầu của cấp số cộng để tổng của chúng là 820 ?