a) 3x-7 \(⋮\) x-3
\(\Leftrightarrow\) 3x-9+2 \(⋮\) x-3
\(\Leftrightarrow\) 3(x-3)+2 \(⋮\) x-3
Vì 3(x-3) \(⋮\) x-3 nên 2 \(⋮\) x-3
\(\Rightarrow\) x-3 \(\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)
\(\Rightarrow x\in\left\{4;5;2;1\right\}\)
Vậy..........................
c) x2+2x-5 \(⋮\) x+3
\(\Leftrightarrow\) x.x+3x-x-3-2 \(⋮\) x+3
\(\Leftrightarrow\) x(x+3)-(x+3)-8 \(⋮\) x+3
Vì x(x+3)-(x+3) \(⋮\) x+3 nên 8 \(⋮\) x+3
\(\Rightarrow\) x+3 \(\inƯ\left(8\right)=\left\{1;2;4;8;-1;-2;-4;-8\right\}\)
\(\Rightarrow x\in\left\{-2;-1;1;5;-4;-5;-7;-11\right\}\)
Vậy.........................
(Câu b tương tự)
a) 3x - 7 chia hết cho x - 3
⇒ \(\left[{}\begin{matrix}\text{3x - 7 ⋮ x - 3}\\\text{x - 3 ⋮ x - 3}\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}\text{3x - 7 ⋮ x - 3}\\\text{3(x - 3) ⋮ x - 3}\end{matrix}\right.\)
3x - 7 chia hết cho 3(x - 3)
Do đó ta có 3x - 7 = 3(x - 3) + 2
Nên 2 ⋮ x - 3
Vậy x - 3 ∈ Ư(2) = {-1; 1; -2; 2}
Ta có bảng sau :
x - 3 | -1 | 1 | -2 | 2 |
x | 2 | 4 | 1 | 5 |
➤ Vậy x ∈ {2; 4; 1; 5}
b) 4x + 3 chia hết cho 2x - 1
⇒ \(\left[{}\begin{matrix}\text{4x + 3 ⋮ 2x - 1}\\\text{2x - 1 ⋮ 2x - 1}\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}\text{4x + 3 ⋮ 2x - 1}\\\text{2(2x - 1) ⋮ 2x - 1}\end{matrix}\right.\)
4x + 3 chia hết cho 2(2x - 1)
Do đó ta có 4x + 3 = 2(2x - 1) + 5
Nên 5 ⋮ 2x - 1
Vậy 2x - 1 ∈ Ư(5) = {-1; 1; -5; 5}
Ta có bảng sau :
2x - 1 | -1 | 1 | -5 | 5 |
2x | 0 | 2 | -4 | 6 |
x | 0 | 1 | -2 | 3 |
➤ Vậy x ∈ {0; 1; -2; 3}