Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đạt Trần Tiến

Tìm các số nguyên dương a,b(\(a\ge b\)) để phương trình \(x^2-abx+a+b=0 \) có nghiệm nguyên

Hạ Mộc
18 tháng 1 2018 lúc 20:41

Theo định lý vi-et ta có:

\(\left\{{}\begin{matrix}xy=a+b\\x+y=ab\end{matrix}\right.\) (với x,y à nghiệm của phương trình)

Giả sử ab>xy

Suy ra x+y>xy suy ra x.(1-y)+y-1>-1 suy ra (x-1)(y-1)<1 suy ra x=1 hoặc y=1

Suy ra 1-ab+a+b=0(vì tổng các hệ số =0) suy ra a=(1+b)/(b-1) ( đến đoạn này là ok)

Giả sử xy>ab Suy ra a+b>ab suy ra a=1 hoặc b=1

Với a=1 suy ra điều kiện để pt có nghiêm nguyên là: b^2 − 4(1+b) = k^2 ⇒ (b−2−k).(b−2+k) = 8(đến đoạn này ok)

Trường hợp còn lại CM tương tự


Các câu hỏi tương tự
Pham Tien Dat
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Min Suga
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Min Suga
Xem chi tiết
dia fic
Xem chi tiết
Hoàng Nguyệt
Xem chi tiết
Thomas Lê - D
Xem chi tiết