\(y\left(x+m+2\right)=mx-x+m+2\)
\(\Leftrightarrow\left(xy+2y+x-2\right)+m\left(y-x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}y-x-1=0\\xy+2y+x-2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=x+1\\xy+2y+x-2=0\end{matrix}\right.\)
\(\Rightarrow x\left(x+1\right)+2\left(x+1\right)+x-2=0\)
\(\Leftrightarrow x^2+4x=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=-4\Rightarrow y=-3\end{matrix}\right.\)
Vậy đồ thị đi qua 2 điểm: \(A\left(0;1\right);B\left(-4;-3\right)\)