\(\left(\dfrac{1}{3}+\dfrac{3}{4}x\right)^4=\sum\limits^4_{k=0}C^k_4.\left(\dfrac{1}{3}\right)^{4-k}.\left(\dfrac{3}{4}\right)^k.x^k\)
Nhị thức Newton có 1 đặc điểm là hệ số khi tăng đến số cao nhất sẽ ko tăng nữa mà giảm dần, từ đó ta giả sử \(a_n\) là hệ số lớn nhất\(\Rightarrow\left\{{}\begin{matrix}a_n\ge a_{n+1}\\a_n\ge a_{n-1}\end{matrix}\right.\)
\(a_n=C^{n-1}_4.\left(\dfrac{1}{3}\right)^{5-n}.\left(\dfrac{3}{4}\right)^{n-1}\)
\(a_{n-1}=C^{n-2}_4.\left(\dfrac{1}{3}\right)^{6-n}.\left(\dfrac{3}{4}\right)^{n-2}\)
\(a_{n+1}=C^n_4.\left(\dfrac{1}{3}\right)^{4-n}.\left(\dfrac{3}{4}\right)^n\)
\(\Rightarrow\left\{{}\begin{matrix}C^{n-1}_4.\left(\dfrac{1}{3}\right)^{5-n}.\left(\dfrac{3}{4}\right)^{n-1}\ge C^{n-2}_4.\left(\dfrac{1}{3}\right)^{6-n}.\left(\dfrac{3}{4}\right)^{n-2}\\C^{n-1}_4.\left(\dfrac{1}{3}\right)^{5-n}.\left(\dfrac{3}{4}\right)^{n-1}\ge C^n_4.\left(\dfrac{1}{3}\right)^{4-n}.\left(\dfrac{3}{4}\right)^n\end{matrix}\right.\)
Bạn tự khai triển nốt nhé, sẽ chặn được k là xong. Mà thú thiệt, mấy bài kiểu này cứ mode-7 rồi nhập hàn là xong :)