Ta có: \(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(=2\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(=2\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(=2.\frac{3}{16}=\frac{3}{8}\)
\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(=\frac{2}{20}+\frac{2}{\text{}30}+\frac{2}{42}+...+\frac{2}{240}\)
\(=2\cdot\left(\frac{1}{20}+\frac{1}{\text{}30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(=2\cdot\left(\frac{1}{4\cdot5}+\frac{1}{\text{}5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{15\cdot16}\right)\)
\(=2\cdot\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{\text{}5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(=2\cdot\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(=2\cdot\left(\frac{4}{16}-\frac{1}{16}\right)\)
\(=2\cdot\frac{3}{16}\)
\(=\frac{3}{8}\)