\(x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=x\left(x^2-y\right)-x^2\left(x+y\right)+xy\left(x-1\right)\)
\(=x\left(x^2-y-x^2-xy+xy-y\right)=x.\left(-2y\right)-2xy\)
Thay x,y vào và tính.
\(x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)
\(=x\left(x^2-y\right)-x^2\left(x+y\right)+xy\left(x-1\right)\)
\(=x\left(x^2-y-x^2-xy+xy-y\right)\)
\(=x.\left(-2y\right)-2xy\) \(^{\left(1\right)}\)
Thay \(x=\dfrac{1}{2};y=-100\) vào \(^{\left(1\right)}\) , Ta được:
\(\dfrac{1}{2}.\left[\left(-2\right).\left(-100\right)\right]-2.\dfrac{1}{2}.\left(-100\right)\)
\(=\dfrac{1}{2}.200-\left(-100\right)\)
\(=100+100=200\)