a) (2x+12x−1−2x−12x+1):4x10x−5=(2x+1)2−(2x−1)2(2x−1)(2x+1).10x+54x(2x+12x−1−2x−12x+1):4x10x−5=(2x+1)2−(2x−1)2(2x−1)(2x+1).10x+54x
=4x2+4x+1−4x2+4x−1(2x−1)(2x+1).5(2x+1)4x4x2+4x+1−4x2+4x−1(2x−1)(2x+1).5(2x+1)4x
=8x.5(2x+1)(2x−1)(2
b) \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)=\left(\dfrac{1}{x\left(x+1\right)}-\dfrac{x\left(2-x\right)}{x\left(x+1\right)}\right):\left(\dfrac{1}{x}+\dfrac{x^2}{x}-\dfrac{2x}{x}\right)=\left(\dfrac{1-2x+x^2}{x\left(x+1\right)}\right):\left(\dfrac{1+x^2-2x}{x}\right)=\left(\dfrac{\left(x-1\right)^2}{x\left(x+1\right)}\right)\cdot\left(\dfrac{x}{\left(x-1\right)^2}\right)=\dfrac{\left(x-1\right)^2\cdot x}{\left(x-1\right)^2\cdot x\cdot\left(x+1\right)}=\dfrac{1}{x+1}\)
c) nè
\(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}\cdot\left(\dfrac{1}{x^2-2x+1}+\dfrac{1}{1-x^2}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x\left(x^2-1\right)}{x^2+1}\cdot\left(\dfrac{1}{\left(x-1\right)^2}+\dfrac{-1}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{x+1}{\left(x-1\right)^2\left(x+1\right)}+\dfrac{-1\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x-1\right)}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{x+1-x+1}{\left(x-1\right)^2\left(x+1\right)}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)\cdot2}{\left(x^2+1\right)\left(x-1\right)^2\left(x+1\right)}\)
\(=\dfrac{1}{x-1}-\dfrac{2x}{\left(x^2+1\right)\left(x-1\right)}\)
\(=\dfrac{x^2+1}{\left(x-1\right)\left(x^2+1\right)}-\dfrac{2x}{\left(x^2+1\right)\left(x-1\right)}\)
\(=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x^2+1\right)}\)
\(=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x^2+1\right)}\)
\(=\dfrac{x-1}{x^2+1}\)