\(A=\left(\sqrt{3}+1\right)\sqrt{\frac{14-6\sqrt{3}}{5+\sqrt{3}}}=\left(\sqrt{3}+1\right)\sqrt{\frac{20+4\sqrt{3}-10\sqrt{3}-6}{5+\sqrt{3}}}=\left(\sqrt{3}+1\right)\sqrt{\frac{4\left(5+\sqrt{3}\right)-2\sqrt{3}\left(5+\sqrt{3}\right)}{5+\sqrt{3}}}=\left(\sqrt{3}+1\right)\sqrt{\frac{\left(4-2\sqrt{3}\right)\left(5+\sqrt{3}\right)}{5+\sqrt{3}}}=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}=\left(\sqrt{3}+1\right)\sqrt{3-2\sqrt{3}+1}=\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3}-1\right)^2}=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=3-1=2\Rightarrow A=2\)