\(B=-3\left(\dfrac{1}{4}-\dfrac{1}{4^2}+\dfrac{1}{4^3}-\dfrac{1}{4^4}+...-\dfrac{1}{4^{100}}\right)\)
Đặt \(C=\dfrac{1}{4}-\dfrac{1}{4^2}+...-\dfrac{1}{4^{100}}\)
\(\Leftrightarrow C\cdot\dfrac{1}{4}=\dfrac{1}{4^2}-\dfrac{1}{4^3}+...-\dfrac{1}{4^{101}}\)
\(\Leftrightarrow C\cdot\dfrac{-3}{4}=\dfrac{-1}{4^{101}}-\dfrac{1}{4}=\dfrac{-1-4^{100}}{4^{101}}\)
\(\Leftrightarrow C=\dfrac{-4^{100}-1}{4^{101}}\cdot\dfrac{-4}{3}=\dfrac{4^{100}+1}{3\cdot4^{100}}\)
\(\Leftrightarrow B=\dfrac{-4^{100}-1}{4^{100}}\)