tính giá trị của biểu thức:
\(P=\left(2x^5+2x^4-x^3-1\right)^{2016}+\left(\sqrt{2x+2x-3x+3x+3}\right)^3+\dfrac{\left(2x^3+2x^2-x-3\right)^{2017}}{2x^4+2x^3-x^2-3^{2017}}\)
khi \(x=\sqrt{\dfrac{2-\sqrt{3}}{2}}\)
Cho \(x=\sqrt{\dfrac{1}{2\sqrt{3}-2}-\dfrac{3}{2.\left(\sqrt{3}+1\right)}}\). Tính: \(A=\dfrac{4.\left(x+1\right).x^{2013}-2.x^{2012}+2x+1}{2x^2+3x}\)
Cho \(x=\dfrac{\sqrt{28-16\sqrt{3}}}{\sqrt{3}-1}\). Tính \(B=\left(x^6+3x^5-2x^3+x^2+2x-1\right)^{2018}\)
1) \(\dfrac{x-3x^2}{2}+\sqrt{2x^4-x^3+7x^2-3x+3}=2\)
2) \(1+\sqrt{\dfrac{x-2}{1-x}}=\dfrac{2x^2-2x+1}{x^2-2x+2}\)
3) \(x+y+z+\dfrac{3}{x-1}+\dfrac{3}{y-1}+\dfrac{3}{z-1}=2\left(\sqrt{x+2}+\sqrt{y+2}+\sqrt{z+2}\right)\) với x ,y ,z > 1
4) \(\sqrt[3]{x+6}+x^2=7-\sqrt{x-1}\)
5) \(x^4-2x^3+x-\sqrt{2\left(x^2-x\right)}=0\)
giải hệ phương trình
\(\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{y-3}=3\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}+\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=4\end{matrix}\right.\)
1, gpt:
\(3\sqrt{1+x}+3\sqrt{3-3x}=\sqrt{28x^2-12x+9}\)
2, giải hpt:
\(\left\{{}\begin{matrix}\dfrac{4}{2x+y}+\dfrac{1}{3x-y}=2\\4x+12y=7\left(2x+y\right)\left(3x-y\right)\end{matrix}\right.\).
Giải phương trình:
1. \(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\dfrac{6-2x}{\sqrt{5-x}}+\dfrac{6+2x}{\sqrt{5+x}}=\dfrac{8}{3}\)
4. \(x^2+1-\left(x+1\right)\sqrt{x^2-2x+3}=0\)
5. \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
6. \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)
Giải ptrinh :
\(\dfrac{x^2}{\sqrt{3x-2}}-\sqrt{3x-2}=1-x\)
\(\sqrt{x+1}+2\left(x+1\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\)
\(3x^2+3x+2=\left(x+6\right)\sqrt{3x^2-2x-3}\)
Giải phương trình:
1, \(4\sqrt{x+3}+\sqrt{19-3x}=x^2+2x+9\)
2, \(\sqrt{3x-8}-\sqrt{x+1}=\dfrac{2x-11}{5}\)
3, \(\sqrt{x+\dfrac{3}{x}}=\dfrac{x^2+7}{2\left(x+1\right)}\)