Lời giải:
Vì $x^3-ax^2+bx-2010$ có 3 nghiệm nguyên dương nên ta có thể viết $x^3-ax^2+bx-2010=(x-m)(x-n)(x-p)$ với $m,n,p$ đôi một phân biệt, là các số nguyên dương- nghiệm của $f(x)$
Khai triển ta có:
$x^3-ax^2+bx-2010=x^3-x^2(m+n+p)+x(mn+mp+np)-mnp$
Đồng nhất hệ số thu được:
\(\left\{\begin{matrix} m+n+p=a\\ mnp=2010\end{matrix}\right.\)
Không mất tổng quát giả sử $m>n>p$ thì $m^3> mnp=2010\Rightarrow m\geq 12$ và $m= \frac{2010}{np}\leq \frac{2010}{1.2}=1005$
$m$ lại là ước của $2010$ nên ta suy ra $m$ có thể nhận các giá trị:
$m=134; m=15; m=201; m=335;m=402;m=30; m=1005; m=670$
Từ đây ta có những bộ số thỏa mãn là:
$(m,n,p)=(134; 15; 1); (134; 5;3); (201; 5;2); (201; 10;1); (335; 6; 1); (335; 3;2); (402; 5;1); (1005; 2;1)$
Từ đây kiểm tra xem bộ nào thỏa $a=m+n+p$ min ta thấy $a_{\min}=134+5+3=142$