Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Võ Hồng Phúc

\(\text{Cho }\left(a+2\right)\left(b+2\right)=\frac{25}{4}\)

\(\text{Tìm Min }F=\sqrt{a^4+1}+\sqrt{b^4+1}\)

Lê Thị Thục Hiền
29 tháng 9 2019 lúc 12:53

Áp dụng bđt bunhiacopski có:

\(\left(a^4+1\right)\left(1+4^2\right)\ge\left(a^2+4\right)^2\)

=> \(\sqrt{a^4+1}\ge\sqrt{\frac{\left(a^2+4\right)^2}{1+4^2}}=\frac{a^2+4}{\sqrt{17}}\)(1)

Tương tự cx có: \(\sqrt{b^4+1}\ge\frac{b^2+4}{\sqrt{17}}\) (2)

Từ (1),(2) => \(F\ge\frac{a^2+b^2+8}{\sqrt{17}}\)

Có (a+2)(b+2)=\(\frac{25}{4}\)

=> \(ab+2a+2b+4=\frac{25}{4}\) <=> \(ab+2a+2b=\frac{9}{4}\)

Áp dụng cosi có:

\(ab\le\frac{a^2+b^2}{2}\)

\(2a\le2\left(a^2+\frac{1}{4}\right)\)

\(2b\le2\left(b^2+\frac{1}{4}\right)\)

=> \(\frac{a^2+b^2}{2}+2a^2+\frac{1}{2}+2b^2+\frac{1}{2}\ge ab+2a+2b=\frac{9}{4}\)

<=> \(\frac{a^2+b^2+4a^2+4b^2}{2}\ge\frac{9}{4}-\frac{1}{2}-\frac{1}{2}=\frac{5}{4}\)

<=> \(\frac{5\left(a^2+b^2\right)}{2}\ge\frac{5}{4}\)

<=> \(a^2+b^2\ge\frac{1}{2}\)

Thay \(a^2+b^2\ge\frac{1}{2}\) vào F có:

\(F\ge\frac{\frac{1}{2}+8}{\sqrt{17}}\)

<=> F \(\ge\frac{\sqrt{17}}{2}\)

Dấu "=" xảy ra <=>\(a=b=\frac{1}{2}\)


Các câu hỏi tương tự
:vvv
Xem chi tiết
an nguyenhan
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Lâm ngọc mai
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết