Violympic toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

\(\text{Cho góc bẹt }\widehat{xOy}\)\(.\)\(\text{Trên cùng một nửa mặt phẳng có bờ xy, }\)\(\text{vẽ các tia Oz và Ot}\) \(\text{sao cho}\) \(\widehat{xOz}=70^0;\) \(\widehat{yOt}=55^0.\)

\(a\)\(\text{Chứng tỏ tia Oz nằm giữa hai tia Ox và Ot?}\)

\(b\)\(\text{Chứng tỏ tia Ot là tia phân giác của }\widehat{yOz?}\)

\(c\)\(\text{Vẽ tia phân giác On của }\widehat{xOz}.\) \(\text{Tính }\widehat{nOt}?\)

Nguyễn Lê Phước Thịnh
21 tháng 4 2021 lúc 21:57

b) Ta có: tia Oz nằm giữa hai tia Ox và Ot(cmt)

nên \(\widehat{xOz}+\widehat{tOz}=\widehat{xOt}\)

\(\Leftrightarrow\widehat{tOz}+70^0=125^0\)

hay \(\widehat{tOz}=55^0\)

Ta có: \(\widehat{xOz}+\widehat{yOz}=180^0\)(hai góc kề bù)

\(\Leftrightarrow70^0+\widehat{yOz}=180^0\)

hay \(\widehat{yOz}=110^0\)

Trên cùng một nửa mặt phẳng bờ chứa tia Oy, ta có: \(\widehat{yOt}< \widehat{yOz}\left(55^0< 110^0\right)\)

nên tia Ot nằm giữa hai tia Oy và Oz

Ta có: tia Ot nằm giữa hai tia Oy và Oz(cmt)

mà \(\widehat{yOt}=\widehat{zOt}\left(=55^0\right)\)

nên Ot là tia phân giác của \(\widehat{yOz}\)(đpcm)

Nguyễn Lê Phước Thịnh
21 tháng 4 2021 lúc 21:53

a) Ta có: \(\widehat{yOt}+\widehat{xOt}=180^0\)(hai góc kề bù)

\(\Leftrightarrow\widehat{xOt}+55^0=180^0\)

hay \(\widehat{xOt}=125^0\)

Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\widehat{xOz}< \widehat{xOt}\left(70^0< 125^0\right)\)

nên tia Oz nằm giữa hai tia Ox và Ot(Đpcm)


Các câu hỏi tương tự
Xem chi tiết
Xem chi tiết
dream XD
Xem chi tiết
Nguyễn Thục Uyên
Xem chi tiết
Au Nhat Anh Duong
Xem chi tiết
Xem chi tiết
phan thị thùy linh
Xem chi tiết
Nguyễn Hoàng Mỹ Duyên
Xem chi tiết
Nguyễn Thị Bích
Xem chi tiết