\(\left(x-1\right)\left(x-3\right)\le\frac{18}{x^2-4x-4}\) ( ĐK : \(\left\{{}\begin{matrix}x\ne2+2\sqrt{2}\\x\ne2-2\sqrt{2}\end{matrix}\right.\) )
\(\Leftrightarrow x^2-4x+3\le\frac{18}{x^2-4x-4}\)
Đặt \(x^2-4x+3=a\)
\(\Leftrightarrow a\le\frac{18}{a-7}\)
\(\Leftrightarrow\frac{a^2-7a-18}{a-7}\le0\)
\(\Leftrightarrow\frac{\left(a+2\right)\left(a-9\right)}{a-7}\le0\)
Lập bảng xét dấu và giải ra ta được :
\(\left[{}\begin{matrix}a\le-2\\7< a\le9\end{matrix}\right.\)
Với \(a\le-2\)
\(\Leftrightarrow x^2-4x+5\le0\) ( Vô nghiệm )
Với \(7< a\le9\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x-4\ge0\\x^2-4x-6\le0\end{matrix}\right.\) \(\Leftrightarrow x\in\) [ \(2-\sqrt{10};2-2\sqrt{2}\) ) \(\cup\) ( \(2+2\sqrt{2};2+\sqrt{10}\) )
\(P=2-2\sqrt{2}+2+2\sqrt{2}=4\)