Ôn tập Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Bảo Anh

Tam giác ABC vuông tại A có phân giác BE. Kẻ EH vuông góc với BC (H thuộc BC). Gọi K là giao điểm các tia BA và HE.

a) Chứng minh rằng BE vuông góc với KC.

b) So sánh AE và EC.

c) Lấy điểm D thuộc cạnh BC, sao cho BAD=45 . Gọi I là giao điểm của BE và AD. Chứng minh rằng I cách đều ba cạnh của tam giác ABC.

Trúc Giang
9 tháng 8 2020 lúc 8:05

a) Xét ΔKBC có:

+) KH ⊥ BC

+) AC ⊥ AB

Và: E là gia điểm của KH và AC

=> E là trực tâm của ΔKBC

=> BE là đường cao ΔKBC

=> BE ⊥ KC

b) Xét 2 tam giác vuông ΔABE và ΔHBE ta có:

Cạnh huyền BE chung

\(\widehat{ABE}=\widehat{HBE}\left(GT\right)\)

=> ΔABE = ΔHBE (c.h - g.n)

=> AE = HE (2 canhj tương ứng) (1)

ΔEHC vuông tại H

=> HE < EC (c.g.v < c.h) (2)

Từ (1) và (2) => AE < EC

c/ Ta có: \(\widehat{BAD}+\widehat{DAC}=\widehat{BAC}\)

\(\Rightarrow\widehat{DAC}=\widehat{BAC}-\widehat{BAD}=90^0-45^0\)

\(\Rightarrow\widehat{DAC}=45^0\)

\(\Rightarrow\widehat{DAC}=\widehat{BAD}\left(=45^0\right)\)

=> AD là phân giác của góc BAC

Mà I ∈ AD (GT)

=> I ∈ tia phân giác của góc BAC

=> I cách đều 2 cạnh AB, AC

Trúc Giang
8 tháng 8 2020 lúc 21:03

a) ΔKBC có:

+) KH ⊥ BC (GT)

+) AC ⊥ BK (GT)

+) \(KH\cap AC=\left\{E\right\}\)

=> E là trực tâm của ΔKBC

=> BE là đường cao của ΔKBC

=> BE ⊥ KC

b) Sửa đề: AE = EH

Xét 2 tam giác vuông ΔABE và ΔHBE ta có:

Cạnh huyen BE: chung

\(\widehat{ABE}=\widehat{HBE}\left(GT\right)\)

=> ΔABE = ΔHBE (c.h - g.n)

=> AE = EH (2 cạnh tương ứng)

c) Ta có: \(\widehat{BAD}+\widehat{DAC}=\widehat{BAC}\)

\(\Rightarrow\widehat{DAC}=\widehat{BAC}-\widehat{BAD}=90^0-45^0\)

\(\Rightarrow\widehat{DAC}=45^0\)

\(\Rightarrow\widehat{BAD}=\widehat{DAC}\)

=> AD là phân giác của góc BAC (1)

Lại có: I ∈ AD (2)

Từ (1) và (2) => I cách đều AC và AB


Các câu hỏi tương tự
Tùng Nguyễn
Xem chi tiết
Quỳnh Tiêu
Xem chi tiết
Phan Như Quỳnh
Xem chi tiết
Nguyễn Lan Anh
Xem chi tiết
Duetbruhdarklmao
Xem chi tiết
Nguyễn Anh Kiệt
Xem chi tiết
The Mouse
Xem chi tiết
Thị Hải Tuyết Phan
Xem chi tiết
New year
Xem chi tiết