a, Xét \(\Delta ABD;\Delta EBD\) có:
\(\widehat{B_1}=\widehat{B_2}\) (do BD là p/g góc B)
BD chung
\(\widehat{BAD}=\widehat{BED}=90^0\)
\(\Rightarrow\Delta BAD=\Delta BED\left(CH-GN\right)\)
=> AB=EB => B nằm trên trung trực của AE
AD=ED => D nằm trên trung trực của AE
=> BD là trung trực của AE.
Vậy BD là trung trực của AE.
b, Xét \(\Delta ADF;\Delta EDC\) có:
\(\widehat{DAF}=\widehat{DEC}=90^0\)
AD=ED
\(\widehat{D_1}=\widehat{D_3}\) (đối đỉnh)
\(\Rightarrow\Delta ADF=\Delta EDC\left(g-c-g\right)\Rightarrow DF=DC\)
Vậy DF=DC
c, Ta có:
\(CA\perp BF\) => CA là đường cao xuất phát từ C của \(\Delta BCF\)
\(FE\perp BC\) => FE là đường cao xuất phát từ F của \(\Delta BCF\)
Mà D là giao điểm của CA và FE => D là trực tâm của tam giác BCF
=> \(BD\perp FC\). (1)
Mà BD là trung trực của AE \(\Rightarrow BD\perp AE\) (2)
Từ (1) và (2) => AE//FC
Vậy AE//FC