Đường thẳng BC qua C và vuông góc AH nên nhận (2;-1) là 1 vtpt
Phương trình BC:
\(2\left(x-0\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-2=0\)
B là giao điểm BN và BC nên tọa độ là nghiệm:
\(\left\{{}\begin{matrix}-x+y=0\\2x-y-2=0\end{matrix}\right.\) \(\Rightarrow B\left(2;2\right)\)
Do A thuộc AH nên tọa độ có dạng: \(A\left(-2a+1;a\right)\)
N là trung điểm AC \(\Rightarrow N\left(\dfrac{-2a+1}{2};\dfrac{a-2}{2}\right)\)
N thuộc BN nên: \(-\dfrac{-2a+1}{2}+\dfrac{a-2}{2}=0\)
\(\Leftrightarrow a=1\Rightarrow A\left(-1;1\right)\)