Tam giác ABC có đường tròn nội tiếp tiếp xúc với AB, BC, CA lần lượt tại M,N,P. Biết số đo 3 góc A,B,C tỉ lệ với các số 3;5;2. Vậy số đo góc MNP = ...
1. Tam giác ABC có đường tròn nội tiếp, tiếp xúc với AB, BC, CA lần lượt tại M, N, P. Biết số đo của 3 góc A; B; C tỷ lệ với các số 3; 5; 2. Vậy số đó góc MNP là ...
2. Hai đường thẳng y = 2x + 3 + m và y = 3x + 5 - m cắt nhau tại 1 điểm trên Oy. Khi đó m = ?
P/S : Ai giải được bài nào thì giải nha, giúp t với...
Cho đường tròn tâm O nội tiếp tam giác ABC tiếp xúc với các cạnh BC,CA,AB tương ứng tại D,E,F. Đường tròn tâm O' bàng tiếp góc BAC của tam giascABC tiếp xúc với BC và phần kéo dài của các cạnh AB,AC tại P,M,N
1. Chứng minh rằng BP=CD
2. Trên đường thẳng MN lấy các điểm I và K sao cho CK // AB, BI//AC .Chứng minh rằng các tứ giác BICE và BKCF là các hình bình hành.
3. Gọi (S) là đường tròn đi qua ba điểm I,K,P. Chứng minh (S) tiếp xúc với các đường thẳng BC,BI,CK
Bài 4: cho tam giác cân ABC nội tiếp đường tròn (O), cung nhỏ BC có số đo bằng 1000. Tia AO cắt cung nhỏ AC ở E.
a, Tính số đo các góc ở tâm BOE, COE
b, Tính số đo các cung nhỏ AB, AC.
cho tam giác ABC có chu vi là 2P.Các đường tròn bàng tiếp trong góc A,B,C tiếp cúc với các cạnh BC,CA,AB theo thứ tự A1,B1,C1 .Đường tròn bàng tiếp của tam giác tiếp xúc với BC tại m
a) chứng minh CM=P
b) chứng minh rằng nếu AA1=BB1=CC1 thì tam giác ABC đều
cho tam giác ABC ngoại tiếp đường tròn (I) .Gọi M,N,P lần lượt là các tiếp điểm trên các cạnh AB,AC,BC và MD,NE,PF là các đường cao tam giác MNP chứng minh FP là tia phân giác của góc BFC b)DA.FB.EC=EA.BD.FC
1. cho tam giác ABC vuông tại A có đường cao AH.Gọi M,N lần lượt là các điểm đối xứng của H qua AB và AC.CMR: đường thẳng mà là tiếp xúc với đường tròn đường kính BC
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O bán kính R. AD, BE là các đường cao của tam giác ABC. Các tia AD, BE lần lượt cắt (O) tại các điểm thứ hai là M và N. Chứng minh:
a) MN song song với DE
b) Cho (O) và dây AB cố định, điểm C di chuyển trên cung lớn AB. Chứng minh độ dài đường kính đường tròn ngoại tiếp tam giác CDE không đổi
Cho tam giác ABC có đường tròn nội tiếp (I) theo thứ tự tiếp xúc với BC, CA, AB tại D, E, F. Đường thẳng DI cắt EF tại N. Chứng minh đường thẳng AN đi qua trung điểm
BC.