Cho tam giác ABC có 3 góc nhọn đường cao AH. Trên cạnh AC lấy điểm M, trên cạnh AB lấy điểm N sao cho HA là tia phân giác của góc MHN. CM: 3 đường BM, CN,AH đồng quy
Cho tam giác ABC vuông tại C trung tuyến CM. Biết CA = 3cm, CB = 4cm. Độ dài CM là cm.
(Nhập kết quả dưới dạng số thập phân gọn nhất)
Cho tam giác ABC có 3 góc nhọn. Trên đường cao AH của tam giác ABC lấy điểm M (M nằm giữa A và H). Tia BM cắt AC tại I, tia CM cắt AB tại K. Chứng minh HA là tia phân giác của \(\widehat{KHI}\)
Cho tam giác ABC có 3 góc nhọn. Trên đường cao AH của tam giác ABC lấy điểm M (M nằm giữa A và H). Tia BM cắt AC tại I, tia CM cắt AB tại K. Chứng minh HA là tia phân giác của \(\widehat{KHI}\)
Cho Tam giác ABC vuông tại A kẻ phân giác BD cắt đường cao AH tại E
a) C/m ABC đồng dạng HBA
b) C/m BE.AD = BD.HE
c) Tính diện tích tam giác AEB biết AB = 15 cm, AC = 20 cm
Cho tam giác ABC vuông tại A có AB = 12cm, AC =16cm. kẻ đường cao AH.
a) Cm tam giác HBA đồng dạng tam giác ABC.
b) Tính BC,AH,BH
c) gọi AD là phân giac góc BAC ( D thuộc BC)
tính diện tích tam giac AHD (làm tròn đến chữ số thâp phân thứ nhất)
Cho tam giác ABC vuông tại A có AB = 12cm, AC =16cm. kẻ đường cao AH.
a) Cm tam giác HBA đồng dạng tam giác ABC.
b) Tính BC,AH,BH
c) gọi AD là phân giac góc BAC ( D thuộc BC)
tính diện tích tam giac AHD (làm tròn đến chữ số thâp phân thứ nhất)
Cho tam giác ABC có AB = AC = 10cm, BC = 12cm, đường cao AD và BE cắt nhau ở H. Độ dài đoạn BH là ... cm (Nhập kết quả dưới dạng số thập phân)
giúp mk vs....
Cho tam giác ABC vuông tại A, có BC=a không đổi. Kẻ đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên các cạnh AB và AC
a) Cm tứ giác AEHF là hình chữ nhật
b) Gọi M là trung điểm của BH. CM:
c) Gọi N là trung điểm của CH. Tứ giác MEFN là hình gì? Hãy chứng minh
d) Tìm điều kiện của tam giác vuông ABC để EF có độ dài lớn nhất