giải bất phương tình sau
\(\frac{\left(1-x\right)\left(x^2-5x+6\right)}{9+x}< 0\)
Tham khảo lời giải tại đây:
Câu hỏi của Angela jolie - Toán lớp 9 | Học trực tuyến
giải bất phương tình sau
\(\frac{\left(1-x\right)\left(x^2-5x+6\right)}{9+x}< 0\)
Tham khảo lời giải tại đây:
Câu hỏi của Angela jolie - Toán lớp 9 | Học trực tuyến
Cho a, b, c>0. CMR: \(\sqrt{\frac{a}{a+2b}}+\sqrt{\frac{b}{b+2c}}+\sqrt{\frac{c}{c+2a}}>1\)
Cho a, b, c dương. Chứng minh: \(\frac{1}{a\sqrt{3a+2b}}+\frac{1}{b\sqrt{3b+2c}}+\frac{1}{c\sqrt{3c+2a}}\ge\frac{3}{\sqrt{5abc}}\)
Cho các số thực dương a,b,c bất kì.Chứng minh rằng:
\(\frac{1}{a\sqrt{3a+2b}}+\frac{1}{b\sqrt{3b+2c}}+\frac{1}{c\sqrt{3c+2a}}\ge\frac{3}{\sqrt{5abc}}\)
cho a,b,c >0 và a+b+c=2 CM: \(\frac{ab}{\sqrt{2c+ab}}+\frac{bc}{\sqrt{2a+bc}}+\frac{ca}{\sqrt{2b+ca}}\le1\)
Cho các số dương a, b, c. Tìm GTLN của biểu thức:
\(P=\frac{\sqrt{ab}}{a+b+2c}+\frac{\sqrt{bc}}{2a+b+c}+\frac{\sqrt{ac}}{a+2b+c}\)
Cho a,b,c là các số thực dương.Tìm giá trị lớn nhất của biểu thức:
F=\(\frac{\sqrt{ab}}{a+b+2c}+\frac{\sqrt{bc}}{b+c+2a}+\frac{\sqrt{ca}}{c+a+2b}\)
Ôn tập Bất đẳng thức
1 , Cho a,b,c<3 thỏa mãn abc(a+b+c)=3 . Tìm GTNN của C= \(\frac{a}{\sqrt{9-b^2}}+\frac{b}{\sqrt{9-c^2}}+\frac{c}{\sqrt{9-a^2}}\)
2, Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Chứng minh a, \(\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\le1\)
b, \(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge a+b+c\)
3, Cho a,b,c >0 và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)
Tính GTLN của P= \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ca+2a^2}}\)
4 , Cho a,b,c>0 và \(ab+bc+ca\ge a+b+c\)
Chứng minh \(\frac{a^2}{\sqrt{a^3+8}}+\frac{b^2}{\sqrt{b^3+8}}+\frac{c^2}{\sqrt{c^3+8}}\ge1\)
Cho a, b, c là các số thực dương thoả mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le2\). Chứng minh rằng: \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{2}{3}\)
Cho a, b, c dương. Chứng minh: \(\frac{1}{a\sqrt{3a+2b}}+\frac{1}{b\sqrt{3b+2c}}+\frac{1}{c\sqrt{3c+2a}}\ge\frac{3}{\sqrt{5abc}}\)
Ai đó xóa câu hỏi của em rồi @Akai Haruma