Lời giải:
$\sqrt{6,8^2-3,2^2}=\sqrt{(6,8-3,2)(6,8+3,2)}=\sqrt{3,6.10}=\sqrt{36}=6$
Lời giải:
$\sqrt{6,8^2-3,2^2}=\sqrt{(6,8-3,2)(6,8+3,2)}=\sqrt{3,6.10}=\sqrt{36}=6$
Tính:
a) \(\sqrt{6,8^2-3,2^2}\)
b) \(\sqrt{21,8^2-18,2^2}\)
Rút gọn rồi tính :
a) \(\sqrt{6,8^2-3,2^2}\)
b) \(\sqrt{21,8^2-18,2^2}\)
c) \(\sqrt{117,5^2-26,5^2-1440}\)
d) \(\sqrt{146,5^2-109,5^2+27.256}\)
Can bac 2 cua 6,8 binh phuong tru 3,2 binh phuong
\(\sqrt{3,2\:.\:7,2\:.\:49\:}\)
\(\sqrt{2,5\: .\: 12,5\: .20\: }\)
\(\sqrt{1,5}\) . \(\sqrt{\dfrac{2}{3}}\)
\(\sqrt{50\:.\:98\:}\)
Giúp mình vss mình đang cần gấp , cảm ơn nhìuuu ạaa🌷
\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt[]{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
a)\(\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)
b) \(\sqrt{7+4\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
c) \(\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)
d)\(\sqrt{7+2\sqrt{10}}-\sqrt{3-2\sqrt{2}}\)
B= \(\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\sqrt{2}\)
C= \(\sqrt{4-\sqrt{7}}-\sqrt{4}+\sqrt{7}\)
D= \(\sqrt{3}-\sqrt{2}-\sqrt{\sqrt{3}+\sqrt{2}}\)
E= \(\sqrt{4+2\sqrt{2}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
F= \(\left(\sqrt{2}-\sqrt{3+\sqrt{5}}\right)\sqrt{2}+2\sqrt{5}\)
G= \(\left(\sqrt{14}-\sqrt{10}\right).\left(\sqrt{6+\sqrt{35}}\right)\)
H= \(\sqrt{11-4\sqrt{7}}-\sqrt{2}.\sqrt{8+3\sqrt{7}}\)
A)\(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\)
B)\(\left(\sqrt{2}+1^{ }\right)^3-\left(\sqrt{2}-1\right)^3\) C)\(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\) D)\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\) E)\(\dfrac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\) F)\(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
A)\(\left(3-2\sqrt{2}\right).\left(3+2\sqrt{2}\right)\) B) \(\sqrt{\left(\sqrt{3}-2\right)}^2-\sqrt{\left(\sqrt{3}+2\right)}^2\) C)\(\sqrt{3-2\sqrt[]{2}}-\sqrt{3+2\sqrt{2}}\)
D)\(\left(1+\sqrt{3}-\sqrt{2}\right).\left(1+\sqrt{3}+2\right)\)
E) \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\) F)\(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\)
H)\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)