* Chứng minh đẳng thức
\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=2\sqrt{x-1}\) với x ≥ 2
* Trục căn thức ở mẫu
a.\(\dfrac{1}{\sqrt{5}+\sqrt{7}}\)
b.\(\dfrac{2}{5-\sqrt{2}-\sqrt{3}}\)
c.\(\dfrac{7}{\sqrt{5}-\sqrt{3}+\sqrt{5}}\)
Câu 1 :Tính : B = ( 3 - \(\sqrt{5}\)) ( \(\sqrt{5}\) + 3 )
Câu 2 : Rút gọn : \(\dfrac{\sqrt{5}+1}{3-2\sqrt{2}}-\dfrac{\sqrt{10}}{\sqrt{5}-2}+3\left(\sqrt{2}-\sqrt{5}\right)\)
Câu 3: \(\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\dfrac{\sqrt{x}+\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\dfrac{x+y+2xy}{1-xy}\right)\)
a, Rút gọn biểu thức a
b, Tính giá trị của A khi x + \(\dfrac{2}{2+\sqrt{3}}\)
giải phương trình :a,\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+3-4\sqrt{x-1}}=1\)
b,\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
c,\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
d, \(3+\sqrt{x+2\sqrt{x-1}}=2\sqrt{x-2\sqrt{x-1}}\)
Giải phương trình:
1, \(x^2\sqrt{x}+\left(x-5\right)^2\sqrt{5-x}=11\left(\sqrt{x}+\sqrt{5-x}\right)\)
2, \(2x+1+x\sqrt{x^2+2}+\left(x+1\right)\sqrt{x^2+2x+3}=0\)
3, \(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2+\sqrt{2x-5}}=2\sqrt{2}\)
4, \(\sqrt{x^2-\dfrac{1}{4x}}+\sqrt{x-\dfrac{1}{4x}}=x\)
5, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-1-20}=5\sqrt{x+1}\)
Giải phương trình
a, \(\sqrt{x-1+4\sqrt{x-5}}+\sqrt{11+x+8\sqrt{x-5}}=0\)
b, \(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2+\sqrt{2x-5}}=\sqrt{8}\)
c. \(\sqrt[3]{\left(65+x\right)^2}+4\sqrt[3]{\left(65-x\right)^2}=5\sqrt[3]{65^2-x^2}\)
d, \(\sqrt{\dfrac{x^2+x+1}{x}}+\sqrt{\dfrac{x}{x^2+x+1}}=\dfrac{7}{4}\)
1/ Cho biểu thức:
\(Q=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right).\left(\dfrac{x+x\sqrt{x}}{\sqrt{x}-1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-x}\right)\)với x>0, x\(\ne\)1
a) rút gọn Q
b) Tìm các giá trị của x để Q= -1
2/ Thu gọn biểu thức sau:
a) \(A=\dfrac{5+\sqrt{5}}{\sqrt{5}+2}+\dfrac{\sqrt{5}}{\sqrt{5}-1}-\dfrac{3\sqrt{5}}{3+\sqrt{5}}\)
b) \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)( x >0)
Giúp mk với
Giải phương trình vô tỉ:
1/ \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+15}\)
2/ \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x+1\right)}-\sqrt{x^2-3x+4}\)
3/ \(\sqrt[5]{x-1}+\sqrt[3]{x+8}=-x^3+1\)
4/ \(\sqrt{5-x^6}+\sqrt[3]{3x^4-2}=1\)
\(\dfrac{8\sqrt{x}-x-31}{x-8\sqrt{x}-15}-\dfrac{\sqrt{x}+5}{\sqrt{x}-3}-\dfrac{3\sqrt{x}-1}{5-\sqrt{x}}\) rút gọn giùm ae
1, \(a, \sqrt{3x-5} = \sqrt{7x-1} \)
\(b, \sqrt{5x-7}=m \) Biện luận theo m
\(c, \sqrt{x-3} + \sqrt{13-x} =2\sqrt{5}\)
\(d, \sqrt{x-2} + \sqrt{4-x} = x^{2} -6x+11 \)
\(e, \sqrt[3]{x-7} + \sqrt[3]{x-3} =\sqrt[6]{(x-3)(x-7)}\)
\(f, \sqrt[3]{x-1} + \sqrt[3]{x+1} =\sqrt[3]{5x}\)
\(g, \sqrt[3]{x+5} + \sqrt[3]{x+6} =\sqrt[3]{2x+11}\)
h, \(\sqrt[3]{(x-2)^{2}} + \sqrt[3]{(x+7)^{2}} - \sqrt[3]{(2-x)(x+7)}\)
\(k, \sqrt{\dfrac{x}{2x-1}} +\sqrt{\dfrac{2x-1}{x}} = 2\)
MN THÔNG CẢM R GIÚP EM VỚI Ạ
1)
2)
3)
4)
5)