Lời giải:
ĐKXĐ: Với mọi \(x\in\mathbb{R}\)
Sử dụng pp liên hợp:
Ta có: \(\sqrt{2x^2+x+9}+\sqrt{2x^2-x+1}=x+4\)
\(\Leftrightarrow \sqrt{2x^2+x+9}-\left(\frac{x}{2}+3\right)+\sqrt{2x^2-x+1}-\left(\frac{x}{2}+1\right)=0\)
\(\Leftrightarrow \frac{\frac{7x^2}{4}-2x}{\sqrt{2x^2+x+9}+\frac{x}{2}+3}+\frac{\frac{7x^2}{4}-2x}{\sqrt{2x^2-x+1}+\frac{x}{2}+1}=0\)
\(\Leftrightarrow (\frac{7x^2}{4}-2x)\left(\frac{1}{\sqrt{2x^2+x+9}+\frac{x}{2}+3}+\frac{1}{\sqrt{2x^2-x+1}+\frac{x}{2}+1}\right)=0\)
Vì biểu thức trong ngoặc lớn luôn lớn hơn $0$ nên suy ra :
\(\frac{7x^2}{4}-2x=0\Leftrightarrow \)\(\left[{}\begin{matrix}x=0\\x=\dfrac{7}{8}\end{matrix}\right.\) (thử lại thấy đúng)