Giải phương trình:
1, \(4\sqrt{x+3}+\sqrt{19-3x}=x^2+2x+9\)
2, \(\sqrt{3x-8}-\sqrt{x+1}=\dfrac{2x-11}{5}\)
3, \(\sqrt{x+\dfrac{3}{x}}=\dfrac{x^2+7}{2\left(x+1\right)}\)
1) Rút gọn biểu thức
P=\(\left(\dfrac{3x-6\sqrt{x}}{x\sqrt{x}-2x}-\dfrac{1}{2-\sqrt{x}}+\dfrac{\sqrt{x}-3}{\sqrt{x}}\right).\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)
Giải ptrinh :
\(\dfrac{x^2}{\sqrt{3x-2}}-\sqrt{3x-2}=1-x\)
\(\sqrt{x+1}+2\left(x+1\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\)
\(3x^2+3x+2=\left(x+6\right)\sqrt{3x^2-2x-3}\)
Giải phương trình:
1. \(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\dfrac{6-2x}{\sqrt{5-x}}+\dfrac{6+2x}{\sqrt{5+x}}=\dfrac{8}{3}\)
4. \(x^2+1-\left(x+1\right)\sqrt{x^2-2x+3}=0\)
5. \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
6. \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)
\(\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\)
\(\sqrt{x-4}+\sqrt{6+x}=x^2-10x+27\left(4_{ }< x< 6\right)\)
1) \(\dfrac{x-3x^2}{2}+\sqrt{2x^4-x^3+7x^2-3x+3}=2\)
2) \(1+\sqrt{\dfrac{x-2}{1-x}}=\dfrac{2x^2-2x+1}{x^2-2x+2}\)
3) \(x+y+z+\dfrac{3}{x-1}+\dfrac{3}{y-1}+\dfrac{3}{z-1}=2\left(\sqrt{x+2}+\sqrt{y+2}+\sqrt{z+2}\right)\) với x ,y ,z > 1
4) \(\sqrt[3]{x+6}+x^2=7-\sqrt{x-1}\)
5) \(x^4-2x^3+x-\sqrt{2\left(x^2-x\right)}=0\)
Giải phương trình:
1. \(x^2+3x+8=\left(x+5\right)\sqrt{x^2+x+2}\)
2. \(10x^2-9x-8x\sqrt{2x^2-3x+1}+3=0\)
3. \(x^3+6x^2-2x+3-\left(5x-1\right)\sqrt{x^3+3}=0\)
4. \(4\sqrt{x+1}-1=3x+2\sqrt{1-x}+\sqrt{1-x^2}\)
5. \(4\sqrt{x+3}=1+4x+\dfrac{2}{x}\)
Giải phương trình
1, \(x^2+\left(3-\sqrt{x^2+2}\right)x=1+2\sqrt{x^2+2}\)
2, \(10x^2+3x+1=\sqrt{x^2+3}\left(1+6x\right)\)
3, \(\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\)
4, \(x^2+2x+15=6\sqrt{4x+5}\)
5, \(\sqrt{2x^2+5x+12}-x=5-\sqrt{2x^2+3x+2}\)
Giải PT:
\(\sqrt{x^2+3x}+2\sqrt{x+2}=2x+\sqrt{x+\dfrac{6}{x}+5}\)