\(\sqrt{11+2\sqrt{30}}+\sqrt{9+2\sqrt{20}}=\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}+2\right)^2}=\sqrt{6}+\sqrt{5}+\sqrt{5}+2=\sqrt{6}+2\sqrt{5}+2\)
\(\sqrt{11+2\sqrt{30}}+\sqrt{9+2\sqrt{20}}=\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}+2\right)^2}=\sqrt{6}+\sqrt{5}+\sqrt{5}+2=\sqrt{6}+2\sqrt{5}+2\)
\(a,\frac{2}{\sqrt{13}-\sqrt{11}}+\frac{5}{4+\sqrt{ }11}-\sqrt{52}
\)
b,\(\sqrt{6+2\sqrt{5}+\sqrt{9-4\sqrt{5}}-\sqrt{20}}\)
a)\(\frac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\frac{6\sqrt{2}-4}{3-\sqrt{2}}\)
b)\(\sqrt{2-\sqrt{3}}-\sqrt{\frac{3}{2}}\)
c)\(\frac{\sqrt{30}-\sqrt{2}}{\sqrt{8-\sqrt{15}}}-\sqrt{8-\sqrt{49+8\sqrt{3}}}\)
d) \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
e)\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
f)\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
g)\(\frac{\frac{\sqrt{2+\sqrt{3}}}{2}}{\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
Chứng minh rằng:
a)\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\left(\sqrt{5-2\sqrt{6}}\right)}{9\sqrt{3}-11\sqrt{2}}\) là số nguyên
b)\(\left(\sqrt{3}-1\right).\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
\(\sqrt{9+2\sqrt{20}}-\sqrt{9-2\sqrt{20}}\)
\(\sqrt{7-\sqrt{24}}-\dfrac{\sqrt{50}-5}{\sqrt{10}-\sqrt{5}}+\sqrt{\left(11-\sqrt{120}\right)\left(11+2\sqrt{30}\right)^2}\)
Rút gọn giùm mình với ạ
rút gọn
\(\sqrt{29+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}+5\sqrt{2}\)
\(\left(\sqrt{6}-\sqrt{5}\right)^2-\sqrt{11+2\sqrt{30}}\)
\(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
\(\sqrt{11+4\sqrt{7}}-\sqrt{14-6\sqrt{5}}\)
\(\sqrt{22-12\sqrt{2}}-\sqrt{19+6\sqrt{2}}\)
\(\sqrt{-6\sqrt{3}+12}+\sqrt{-12\sqrt{3}+21}\)
Bài 1: Giải PT
a) \(\sqrt{x^2-1}-x^2+1=0\)
b) \(\sqrt{x^2-4}-x+2=0\)
c) \(\sqrt{x^4-8x^2+16}=2-x\)
d) \(\sqrt{9x^2+6x+1}\sqrt{11-6\sqrt{2}}\)
e) \(\sqrt{4^2-9}=2\sqrt{2x+3}\)
f) \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(\sqrt{5}+\sqrt{11-2\sqrt{30}}\)