Bài 6: So sánh phân số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Some one

So sánh tổng S= \(\dfrac{1}{2}\)+\(\dfrac{2}{2^2}\)+\(\dfrac{3}{2^3}\)+...+\(\dfrac{n}{2^n}\)+...+\(\dfrac{2017}{2^{2017}}\)với 2 (\(n\in N\)*)

Giải:

\(S=\dfrac{1}{2}+\dfrac{2}{2^2}+...+\dfrac{n}{2^n}+...+\dfrac{2017}{2^{2017}}\) 

Với \(n>2\) thì \(\dfrac{n}{2^n}=\dfrac{n+1}{2^{n-1}}-\dfrac{n+2}{2^n}\) 

Ta có:

\(\dfrac{n+1}{2^{n-1}}=\dfrac{n+1}{2^n:2}=\dfrac{2.\left(n+1\right)}{2^n}\) 

\(\Rightarrow\dfrac{n+1}{2^{n-1}}-\dfrac{n+2}{2^n}\) 

\(=\dfrac{2.\left(n+1\right)}{2^n}-\dfrac{n+2}{2^n}\) 

\(=\dfrac{2.\left(n+1\right)-n-2}{2^n}\) 

\(=\dfrac{n}{2^n}\) 

  \(\Leftrightarrow S=\dfrac{1}{2}+\left(\dfrac{2+1}{2^{2-1}}-\dfrac{2+2}{2^2}\right)+...+\left(\dfrac{2016+1}{2^{2015}}-\dfrac{2018}{2^{2016}}\right)+\left(\dfrac{2017+1}{2^{2016}}-\dfrac{2019}{2^{2017}}\right)\)

\(S=\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{2019}{2017}\) 

\(S=2-\dfrac{2019}{2017}\)  

\(\Leftrightarrow S=2-\dfrac{2019}{2017}< 2\) 

Hay \(S< 2\)


Các câu hỏi tương tự
Đoàn Phương Linh
Xem chi tiết
Ta minh thanh
Xem chi tiết
Huy Phan Đình
Xem chi tiết
Đỗ Diệp Anh
Xem chi tiết
hàtrang trần
Xem chi tiết
Đặng Tường Vy
Xem chi tiết
Nguyễn ngọc Khế Xanh
Xem chi tiết
Nguyễn ngọc Khế Xanh
Xem chi tiết
Nguyen Thi Kieu Hoa
Xem chi tiết