Giải:
\(S=\dfrac{1}{2}+\dfrac{2}{2^2}+...+\dfrac{n}{2^n}+...+\dfrac{2017}{2^{2017}}\)
Với \(n>2\) thì \(\dfrac{n}{2^n}=\dfrac{n+1}{2^{n-1}}-\dfrac{n+2}{2^n}\)
Ta có:
\(\dfrac{n+1}{2^{n-1}}=\dfrac{n+1}{2^n:2}=\dfrac{2.\left(n+1\right)}{2^n}\)
\(\Rightarrow\dfrac{n+1}{2^{n-1}}-\dfrac{n+2}{2^n}\)
\(=\dfrac{2.\left(n+1\right)}{2^n}-\dfrac{n+2}{2^n}\)
\(=\dfrac{2.\left(n+1\right)-n-2}{2^n}\)
\(=\dfrac{n}{2^n}\)
\(\Leftrightarrow S=\dfrac{1}{2}+\left(\dfrac{2+1}{2^{2-1}}-\dfrac{2+2}{2^2}\right)+...+\left(\dfrac{2016+1}{2^{2015}}-\dfrac{2018}{2^{2016}}\right)+\left(\dfrac{2017+1}{2^{2016}}-\dfrac{2019}{2^{2017}}\right)\)
\(S=\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{2019}{2017}\)
\(S=2-\dfrac{2019}{2017}\)
\(\Leftrightarrow S=2-\dfrac{2019}{2017}< 2\)
Hay \(S< 2\)