\(\dfrac{2023}{2022}=\dfrac{2022}{2022}+\dfrac{1}{2022}=1+\dfrac{1}{2022}\)
\(\dfrac{2021}{2020}=\dfrac{2020}{2020}+\dfrac{1}{2020}=1+\dfrac{1}{2020}\)
\(\dfrac{1}{2022}< \dfrac{1}{2020}\)
\(\Rightarrow\dfrac{2023}{2022}< \dfrac{2021}{2020}\)
\(\dfrac{2023}{2022}=1+\dfrac{1}{2022}\)
\(\dfrac{2021}{2020}=1+\dfrac{1}{2020}\)
mà \(\dfrac{1}{2022}< \dfrac{1}{2020}\)
nên \(\dfrac{2023}{2022}< \dfrac{2021}{2020}\)
20212020=20202020+12020=1+1202020212020=20202020+12020=1+12020
⇒20232022<20212020