\(p=a-\left\{\left(a-3\right)-\left[\left(a+3\right)-\left(-a-2\right)\right]\right\}\)
\(=a-\left\{a-3-\left[a+3+a+2\right]\right\}\)
\(=a-\left\{a-3-a-3-a-2\right\}\)
\(=a-\left\{-a-8\right\}\)
\(=a+a+8\)
\(=2a+8\)
\(Q=\left[a+\left(a+3\right)\right]-\left[\left(a+2\right)-\left(a-2\right)\right]\)
\(=\left[a+a+3\right]-\left[a+2-a+2\right]\)
\(=2a+3-4\)
\(=2a-1\)
Xét hiệu \(P-Q=\left(2a+8\right)-\left(2a-1\right)\)
\(=2a+8-2a+1\)
\(=9>0\)
Vậy: \(P>Q\)
https://hoc24.vn/hoi-dap/question/165385.html