Đặt \(A=\dfrac{2003.2004-1}{2003.2004}\) và \(B=\dfrac{2004.2005-1}{2004.2005}\)
Ta có : \(A=\dfrac{2003.2004-1}{2003.2004}=\dfrac{2003.2004}{2003.2004}-\dfrac{1}{2003.2004}\)
\(=1-\dfrac{1}{2003.2004}\)
\(B=\dfrac{2004.2005-1}{2004.2005}=\dfrac{2004.2005}{2004.2005}-\dfrac{1}{2004.2005}\)
\(=1-\dfrac{1}{2004.2005}\)
Vì \(\dfrac{1}{2003.2004}>\dfrac{1}{2004.2005}\Rightarrow1-\dfrac{1}{2003.2004}< 1-\dfrac{1}{2004.2005}\)
Nên \(A< B\)
Vậy \(\dfrac{2003.2004-1}{2003.2004}< \dfrac{2004.2005-1}{2004.2005}\)
~ Học tốt ~