Lời giải:
Ta có:
\(\sqrt{50}+\sqrt{26}+1> \sqrt{49}+\sqrt{25}+1=7+5+1=13(1)\)
Và:
\(\sqrt{168}< \sqrt{169}=13(2)\)
Từ \((1);(2)\Rightarrow \sqrt{50}+\sqrt{26}+1> 13> \sqrt{168}\)
Vậy \(\sqrt{50}+\sqrt{26}+1> \sqrt{168}\)
So sánh \(\sqrt{50}+\sqrt{26}+1\) và \(\sqrt{168}\)
\(\sqrt{50}>\sqrt{49}=7\)
\(\sqrt{26}>\sqrt{25}=5\)
=>\(\sqrt{50}+\sqrt{26}+1>7+5+1=13=\sqrt{169}>\sqrt{168}\)
Vậy \(\sqrt{50}+\sqrt{26}+1>\sqrt{168}\)