Trục căn ở mẫu:
\(a)\frac{5}{\sqrt{10}}\\ b)\frac{-2}{1-\sqrt{5}}\\ c)\frac{4}{\sqrt{3}+\sqrt{2}}\\ d)\frac{1}{3-2\sqrt{2}}\\ e)\frac{6-\sqrt{6}}{1-\sqrt{6}}\\ g)\frac{3\sqrt{2}-2\sqrt{3}}{2\left(\sqrt{3}-\sqrt{2}\right)}\\ h)\frac{\sqrt{3}-3}{\sqrt{3}-1}\\ i)\frac{\sqrt{15}}{5\sqrt{3}+3\sqrt{5}}\)
Trục căn thức ở mẫu
a)\(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}-\sqrt{7}}\)
b)\(\dfrac{5\sqrt{5}+3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
c)\(\dfrac{3+4\sqrt{3}}{\left(\sqrt{6}+\sqrt{2}\right)-\sqrt{5}}\)
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
Đưa biểu thức trong căn về dạng hình phương của một tổng hoặc một hiệu:
a/ \(\sqrt{7-2\sqrt{10}}-\sqrt{6-2\sqrt{5}}\)
b/ \(\sqrt{33-12\sqrt{6}}+\sqrt{15-6\sqrt{6}}\)
c/\(\sqrt{9-4\sqrt{5}}+\sqrt{12-2\sqrt{35}}\)
d/ \(\sqrt{4-2\sqrt{3}}+\sqrt{28-10\sqrt{3}}\)
e/ \(\frac{\sqrt{5}-\sqrt{15}}{1-\sqrt{3}}-\sqrt{21+4\sqrt{5}}\)
trục căn thức ở mẫu và thực hiện phép tính
a)\(\frac{2}{\sqrt{5}+2}+\frac{1}{\sqrt{3}-2}-2\sqrt{5}\)
b)\(\sqrt{\frac{2}{2-\sqrt{3}}}-\sqrt{\frac{2}{2+\sqrt{3}}}\)
c)\(\frac{2}{\sqrt{3}+1}-\frac{1}{\sqrt{3}-2}+\frac{6}{\sqrt{3}+3}\)
d)\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{35}+\sqrt{36}}\)
1, cho \(M=\dfrac{1}{2-\sqrt{3}}\) và \(N=\sqrt{6}.\sqrt{2}\) kết quả của phét tính 2M - N bằng
a, \(4+4\sqrt{3}\) b, \(2+\sqrt{3}\) c,4 d, \(2\sqrt{3}\)
2, với x>6 thì biểu thức \(-x+\sqrt{\left(6-x\right)^2}\) rút gọn đc kết quả bằng
a, -2x+6 b,2x-6 c -6 d, 6
3, cho hàm số y=f(x)=\(\dfrac{1}{3}\) x -1 khẳng định nào sao đây đúng
a, f(2)<f(3) b, f(-3)< f(-4) c, f (-4)>f(2) d, f(2)<(0)
4,cho tam giác ABC đều cạch a nội tiếp đg tròn (O;R) giá trị của R bằng
a, \(R=\dfrac{a\sqrt{3}}{3}\) b, R=a c, \(R=a\sqrt{3}\) d, \(R=\dfrac{a\sqrt{3}}{2}\)
a. P= (\(3+\sqrt{2}+\sqrt{6}\))(\(\sqrt{6-3\sqrt{3}}\))
b. A=(\(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\)): (\(\sqrt{6}+11\))
c. B= \(\frac{\sqrt{8-2\sqrt{12}}}{\sqrt{3}-1}\)-\(\sqrt{8}\)
d. C= \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
đ. D=\(\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
e. E= \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
ê. G= \(\sqrt{4+5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
g. H=\(\frac{2\sqrt{4+\sqrt{5+21+\sqrt{80}}}}{\sqrt{10}-\sqrt{2}}\)
i. I=\(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}+\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}\)
k. K=\(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Rút gọn các biểu thức sau:
a) \(\dfrac{3-2\sqrt{2}}{1-\sqrt{2}}\) b)\(\dfrac{5\sqrt{6}-15}{6-2\sqrt{6}}\)
c) \(\sqrt{\left(3-2\sqrt{2}\right)\left(4-2\sqrt{3}\right)}\)
d) \(\sqrt{\left(6+2\sqrt{5}\right)^3}-\sqrt{\left(6-2\sqrt{5}\right)^3}\)