\(C=\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\)
\(4C=1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\)
\(4C-C=3C=1-\dfrac{1}{4^{1000}}\)
\(C=\dfrac{1-\dfrac{1}{4^{1000}}}{3}\)
Vì \(1-\dfrac{1}{4^{1000}}< 1\) nên \(\dfrac{1-\dfrac{1}{4^{1000}}}{3}< \dfrac{1}{3}< \dfrac{3}{4}\)
Vậy \(C=\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}< \dfrac{3}{4}\)