bn dựa vào câu trả lời của Quách Thùy Dung trong câu hỏi của The Dack Knight mà làm
Câu hỏi của The Dark Knight - Toán lớp 6 | Học trực tuyến
bn dựa vào câu trả lời của Quách Thùy Dung trong câu hỏi của The Dack Knight mà làm
Câu hỏi của The Dark Knight - Toán lớp 6 | Học trực tuyến
\(C=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+.....+\dfrac{1}{60}\)
Hãy so sánh C với 4/5
thực hiện phép tính
a,\(\dfrac{2}{3}-\dfrac{3}{5}\div\left(-1\dfrac{1}{5}\right)+\left(\dfrac{-2}{3}\right)\times\dfrac{3}{8}\)
b,\(17\dfrac{11}{9}-\left(6\dfrac{3}{13}+7\dfrac{11}{19}\right)+\left(10\dfrac{3}{13}-5\dfrac{1}{4}\right)\)
c,\(\left(\dfrac{-3}{2}\right)^2-\left[-2\dfrac{1}{3}-\left(\dfrac{3}{4}+\dfrac{1}{3}\right)\div2\dfrac{3}{5}\right]\times\left(\dfrac{-3}{4}\right)\)
d,\(\dfrac{21}{33}\div\dfrac{11}{5}-\dfrac{13}{33}\div\dfrac{11}{5}+\dfrac{25}{33}\div\dfrac{11}{5}+\dfrac{6}{11}\)
giúp mình nhé
BT1: CMR:
a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)
b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)
c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)
d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)
e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)
BT2: Tính tổng
a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)
BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
CMR: 1 < S < 2
1.So Sánh
a) A=\(\dfrac{11}{2017}+\dfrac{4}{2019}và\) B=\(\dfrac{10}{2017}+\dfrac{10}{2019}\)
b) M=\(\dfrac{1}{5}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{30}+\dfrac{1}{61}+\dfrac{1}{62}và\dfrac{1}{2}\)
c) E=\(\dfrac{4116-14}{10290-35}và\) K=\(\dfrac{2929-101}{2.1919+404}\)
BT2: Tính nhanh
11) \(-\dfrac{5}{7}-\left(-\dfrac{5}{67}\right)+\dfrac{13}{30}+\dfrac{1}{2}+\left(-1\dfrac{5}{6}\right)+1\dfrac{3}{14}-\left(-\dfrac{2}{5}\right)\)
12) \(\dfrac{-1}{4}.13\dfrac{9}{11}-0.25.6\dfrac{2}{11}\)
Cho A= \(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{17}-\dfrac{1}{31}+\dfrac{1}{65}-\dfrac{1}{127}\)
So sánh A với \(\dfrac{1}{9}\)
a)\(\dfrac{2}{7}+\dfrac{-3}{8}+\dfrac{11}{7}+\dfrac{1}{7}_{ }+\dfrac{5}{-8}\)
b)\(\dfrac{3}{17}+\dfrac{-5}{13}+\dfrac{-18}{35}+\dfrac{14}{17}+\dfrac{17}{-35}_{ }+\dfrac{-8}{13}\)
c)\(\dfrac{-3}{8}+\dfrac{12}{25}+\dfrac{5}{-8}+\dfrac{2}{-5}+\dfrac{13}{25}\)
d)\(\dfrac{-5}{21}+\left(\dfrac{-16}{21}+1\right)\)
e)\(\dfrac{-3}{17}+\left(\dfrac{2}{3}+\dfrac{3}{17}\right)\)
f)\(\left(\dfrac{-1}{6}+\dfrac{5}{-12}\right)+\dfrac{7}{12}\)
Tính nhanh :
\(\dfrac{1}{10}\)+ \(\dfrac{-1}{11}\)+ \(\dfrac{1}{12}\)+ \(\dfrac{-1}{13}\)+ \(\dfrac{1}{14}\)+ \(\dfrac{-1}{15}\)+ \(\dfrac{1}{16}\)+ \(\dfrac{1}{15}\)+ \(\dfrac{-1}{14}\)+ \(\dfrac{1}{13}\)+ \(\dfrac{-1}{12}\)+ \(\dfrac{-1}{12}\)+ \(\dfrac{1}{11}\)+ \(\dfrac{-1}{10}\)
Tìm x, biết :
a) \(\left(\dfrac{31}{20}-\dfrac{26}{45}\right).\dfrac{-36}{35}< x< \left(\dfrac{51}{56}+\dfrac{8}{21}+\dfrac{1}{3}\right).\dfrac{8}{13}\)
b) \(\dfrac{-3}{5}.x=\dfrac{1}{4}+0,75\)
c) \(\left(\dfrac{1}{7}-\dfrac{1}{3}\right).x=\dfrac{28}{3}.\left(\dfrac{1}{4}-\dfrac{1}{7}\right)\)
d) \(\dfrac{5}{7}.x=\dfrac{9}{8}-0,125\)
e)\(\left(\dfrac{2}{11}+\dfrac{1}{3}\right).x=\left(\dfrac{1}{7}-\dfrac{1}{8}\right).56\)