Lời giải:
a)
$A=3^1+3^2+3^3+...+3^{2016}$
$3A=3^2+3^3+3^4+...+3^{2017}$
Lấy sau trử trước theo vế:
$3A-A=3^{2017}-3$
$A=\frac{3^{2017}-3}{2}< 3^{2017}-3$
Vậy $A< B$
b)
$A=2017.2019=(2018-1)(2018+1)=2018^2+2018-2018-1=2018^2-1< 2018^2$
Vậy $A< B$