a; 1 + 2 + 3 + ... + \(x\) = 5050
Số số hạng của dãy số trên là: (\(x-1\)):1 + 1 = \(x\)
(\(x\) + 1)\(\times\) \(x\): 2 = 5050
(\(x\) + 1) \(\times\) \(x\) = 5050 \(\times\) 2
(\(x+1\)) \(\times\) \(x\) = 10100
(\(x+1\)) \(\times\) \(x\) = 101 \(\times\) 100
Vậy \(x=100\)
b; \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{x^2+x}\) = \(\dfrac{99}{100}\)
\(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{x.\left(x+1\right)}\) = \(\dfrac{99}{100}\)
\(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{x}\) - \(\dfrac{1}{x+1}\) = 1 - \(\dfrac{1}{100}\)
1 - \(\dfrac{1}{x+1}\) = 1 - \(\dfrac{1}{100}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{100}\)
\(x+1\) = 100
\(x=100-1\)
\(x=99\)
Vậy \(x=99\)