a) Ta có: \(2^{91}>2^{90}=\left(2^5\right)^{18}=32^{18}\)
\(5^{35}< 5^{36}=\left(5^2\right)^{18}=25^{18}\)
Suy ra: \(2^{91}>32^{18}>25^{18}>5^{35}\)
Vậy \(2^{91}>5^{35}\)
b) Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\left(1\right)\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\left(2\right)\)
Từ (1) và (2) suy ra \(2^{332}< 8^{111}< 9^{111}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
Tick cho mk nha