a) \(A=3214+5789=3238+5765\)
\(B=5765+3238\)
=>A=B
b) \(A=2011\cdot2011=2011^2\)
\(B=2010\cdot2012=\left(2011-1\right)\left(2011+1\right)=2011^2-1\)
=>A>B
a) Ta có:
A = 3214 + 5789
A = ( 3214 + 24 ) + ( 5789 - 34 )
A = 3238 + 5765
Vì 3238 + 5765 = 5765 + 3238 nên A = B
Vậy A = B
b) Ta có:
A = 2011 . 2011
= ( 2010 + 1 ) . 2011
= 2010 . 2011 + 2011
B = 2010 . ( 2011 + 1 )
B = 2010 . 2011 + 2010
Vì 2010 . 2011 + 2011 > 2010 . 2011 + 2010 ( 2011 > 2010 ) nên A > B
Vậy A > B
A=3214+5789=3238+5765A=3214+5789=3238+5765
B=5765+3238B=5765+3238
=>A=B
b) A=2011⋅2011=20112A=2011⋅2011=20112
B=2010⋅2012=(2011−1)(2011+1)=20112−1B=2010⋅2012=(2011−1)(2011+1)=20112−1
=>A>B