Ta có:
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}\)
\(A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A>\dfrac{1}{2}-\dfrac{1}{100}\)
\(A>\dfrac{49}{100}\)
Ta lại có:
\(\dfrac{49}{100}=\dfrac{96775}{197500}\)
\(\dfrac{304}{1975}=\dfrac{30400}{197500}\)
\(\Rightarrow\dfrac{49}{100}>\dfrac{304}{1975}\)
Mà \(A>\dfrac{49}{100}\)
\(\Rightarrow A>B\)