a/ Ta có :
\(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
Vì \(125^{12}>121^{12}\Leftrightarrow5^{36}>11^{24}\)
b/ Ta có :
\(5^{23}< 6.5^{22}\)
a, \(5^{36}\) và \(11^{24}\)
Ta có:
\(5^{36}\) = \(\left(5^3\right)^{12}\)= \(125^{12}\)
Và \(11^{24}\) = \(\left(11^2\right)^{12}\)= \(121^{12}\)
vì \(125^{12}\)> \(121^{12}\)
Nên \(5^{36}\) > \(11^{24}\)
b, \(5^{23}\) và 6. \(5^{22}\)
Mà \(5^{23}\)= 5. \(5^{22}\)
=> 5. \(5^{22}\) < 6. \(5^{22}\)
Nên \(5^{23}\) < 6. \(5^{22}\)
a.
\(5^{36}=\left(5^3\right)^{12}=125^{12}>121^{12}=\left(11^2\right)^{12}=11^{24}\)
b.
\(5^{23}=5^{22}.5< 5^{22}.6\)