\(3-2\sqrt{3}=\sqrt{9}-\sqrt{12}\)
a) Xét thấy \(12< 16\) và 24 > 16
⇔ 2\(\sqrt{3}\) < 4 và 2\(\sqrt{6}\) > 4
⇔ 3 - 2\(\sqrt{3}\) < -1 và -5 + 2\(\sqrt{6}\) > -1
Từ điều ở trên suy ra :
\(2\sqrt{6}-5>-1>3-2\sqrt{3}\)
b)
\(3-2\sqrt{3}=\sqrt{9}-\sqrt{12}\)
a) Xét thấy \(12< 16\) và 24 > 16
⇔ 2\(\sqrt{3}\) < 4 và 2\(\sqrt{6}\) > 4
⇔ 3 - 2\(\sqrt{3}\) < -1 và -5 + 2\(\sqrt{6}\) > -1
Từ điều ở trên suy ra :
\(2\sqrt{6}-5>-1>3-2\sqrt{3}\)
b)
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
1. Rút gọn \(A=\frac{\sqrt{14+6\sqrt{5}}-\sqrt{14-6\sqrt{5}}}{\sqrt{\left(\sqrt{5}+1\right)\cdot\sqrt{6-2\sqrt{5}}}}\)
2.Tính a) \(B=\left(\sqrt[3]{2}+1\right)^3\cdot\left(\sqrt[3]{2}-1\right)^3\)
b)Tìm C=\(a^3b-ab^3\) với \(a=\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\); \(b=\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\)
3. Giải \(\left|x^2-x+1\right|-\left|x-2\right|=6\)
cho hai biểu thức A=\(\dfrac{2\sqrt{x}-4}{\sqrt{x}-1}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\) với x\(\ge\)0, x\(\ne\)1
a.tính giá trị của A khi x=4
b.rút gọn B
c.so sánh A.B với 5
Trục căn ở mẫu:
\(a)\frac{5}{\sqrt{10}}\\ b)\frac{-2}{1-\sqrt{5}}\\ c)\frac{4}{\sqrt{3}+\sqrt{2}}\\ d)\frac{1}{3-2\sqrt{2}}\\ e)\frac{6-\sqrt{6}}{1-\sqrt{6}}\\ g)\frac{3\sqrt{2}-2\sqrt{3}}{2\left(\sqrt{3}-\sqrt{2}\right)}\\ h)\frac{\sqrt{3}-3}{\sqrt{3}-1}\\ i)\frac{\sqrt{15}}{5\sqrt{3}+3\sqrt{5}}\)
A)\(\frac{6+2\sqrt{5}}{3-\sqrt{5}}-\frac{5+3\sqrt{5}}{\sqrt{5}}+\frac{\sqrt{5}}{2-\sqrt{5}}\)
B)\(\frac{8+2\sqrt{2}}{3-\sqrt{2}}-\frac{2+3\sqrt{2}}{\sqrt{2}}-\frac{3}{\sqrt{2}-1}\)
C)\(\frac{3+\sqrt{2}}{3-\sqrt{3}}-\frac{3+\sqrt{3}}{\sqrt{3}}-\frac{2}{\sqrt{3}-1}\)
D
Tính:
a) \(6\sqrt{\frac{1}{2}}-3\sqrt{8}+\sqrt{19+6\sqrt{2}}\)
b) \(\sqrt{\frac{2}{7+3\sqrt{5}}}+\frac{2}{3-\sqrt{5}}-\frac{2+3\sqrt{2}}{\sqrt{2}}\)
Rút gọn các biểu thức :
\(a,\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(b,\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
Tính:
\(a.\) \(A=\sqrt{12}-2\sqrt{48}+\dfrac{7}{5}\sqrt{75}\)
\(b.\) \(B=\sqrt{14-6\sqrt{5}}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(c.\) \(C=\left(\sqrt{6}-\sqrt{2}\right)\sqrt{2+\sqrt{3}}\)
\(d.\) \(D=\dfrac{5+\sqrt{5}}{\sqrt{5}+2}+\dfrac{\sqrt{5}-5}{\sqrt{5}}-\dfrac{11}{2\sqrt{5}+3}\)