A.Ta có \(10^{30}\)=\(\left(10^3\right)\)= \(1000^{10}\)
\(2^{100}\)=\(\left(2^{10}\right)\)\(^{10}\)=\(1024^{10}\)
Vì \(1000^{10}\)<\(1024^{10}\)nên \(10^{30}\)<\(2^{100}\)
B.Ta có \(5^{40}\)=\(5^{4.10}\)=(\(5^4\))\(^{^{ }10}\)=\(625^{10}\)
Vì \(625^{10}\)>\(620^{10}\)nên\(5^{40}\)>\(620^{10}\)
C.\(10^{20}\)= \(10^{2.10}\)= \(\left(10^2\right)\)\(^{10}\)=\(100^{10}\)
Vì \(100^{10}\)>\(90^{10}\) nên \(10^{20}\)>\(90^{10}\)
A.Ta co: 10^30 =(10^3)^10=1000^10
2^100=(2^10)^10=1024^10
vi 1024>1000 nen1024^10>100^10
nen 10^30<2^100