Ta có:
\(-\dfrac{1}{2};0,3;\dfrac{1}{3};0,5;0,\left(5\right)\)
\(-1,\left(2\right);-\dfrac{6}{5};\dfrac{6}{5};1.2\)
Ta có:
\(-\dfrac{1}{2};0,3;\dfrac{1}{3};0,5;0,\left(5\right)\)
\(-1,\left(2\right);-\dfrac{6}{5};\dfrac{6}{5};1.2\)
tính giá trị của mỗi biểu thức A,B,C,D rồi sắp xếp các kết quả tìm được theo thứ tự tăng dần:
A=\(\dfrac{5}{4}.\left(5-\dfrac{4}{3}\right).\left(-\dfrac{1}{11}\right)\) B=\(\dfrac{3}{4}:\left(-12\right).\left(-\dfrac{2}{3}\right)\)
C=\(\dfrac{5}{4}:\left(-15\right).\left(-\dfrac{2}{5}\right)\) D=\(\left(3\right).\left(\dfrac{2}{3}-\dfrac{5}{4}\right):\left(-7\right)\)
tính
a) \(\left[\dfrac{0.8\div\left(\dfrac{4}{5}\cdot1025\right)}{0.64-1}+\dfrac{\left(1.08-\dfrac{2}{25}\right)\div\dfrac{4}{7}}{\left(6\dfrac{5}{7}-3\dfrac{1}{4}\right)\cdot2\dfrac{2}{17}}+\left(1.2\cdot0.5\right)\div\dfrac{4}{5}\right]\)
b) \(\left(0.2\right)^{-3}\left[\left(-\dfrac{1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}\div\left(2^{-3}\right)^{-1}-\left(0.175\right)^{-2}\)
c) \(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
d) \(\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{3}\)
e) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2\div2\)
f) \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
g) \(\dfrac{1}{-\left(2017\right)\left(-2015\right)}+\dfrac{1}{\left(-2015\right)\left(-2013\right)}+...+\dfrac{1}{\left(-3\right)\cdot\left(-1\right)}\)
h) \(\left(1-\dfrac{1}{1\cdot2}\right)+\left(1-\dfrac{1}{2\cdot3}+...+\left(1-\dfrac{1}{2017\cdot2018}\right)\right)\)
a) \(\dfrac{\left(x+\dfrac{3}{4}\right)\cdot\dfrac{7}{2}-\dfrac{1}{6}}{-\left(\dfrac{4}{5}+\dfrac{1}{3}\right)\cdot\dfrac{1}{2}+1}=2\dfrac{33}{52}\)
b)\(\dfrac{\left(5-\dfrac{2}{7}\right)\cdot\dfrac{7}{9}\cdot\dfrac{3}{5}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=5\dfrac{5}{21}\)
a)\(\dfrac{\left(x+\dfrac{3}{4}\right)\cdot\dfrac{7}{2}-\dfrac{1}{6}}{-\left(\dfrac{4}{5}+\dfrac{1}{3}\right)\cdot\dfrac{1}{2}+1}=2\dfrac{33}{52}\)
b)\(\dfrac{\left(5-\dfrac{2}{7}\right)\cdot\dfrac{7}{9}:\dfrac{3}{5}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=5\dfrac{5}{21}\)
Bài 7: Tìm X
( \(\dfrac{1}{5}\) + \(\dfrac{5}{6}\) - \(\dfrac{9}{10}\) ) . \(\dfrac{3}{5}\) - 0,75 : \(1\dfrac{1}{2}\) - \(1,25^2\)
\(\xrightarrow[\left(1\dfrac{1}{2}\right)^4.\left(-3\dfrac{1}{3}\right)^3.\left(-1\right)^7]{\left(-5\right)^3.\left(-0,9\right)^2}\)
\(\left(\dfrac{1}{2}-\dfrac{7}{13}-\dfrac{1}{3}\right)\) + \(\left(\dfrac{-6}{13}+\dfrac{1}{2}+1\dfrac{1}{3}\right)\)
0,75 + \(\dfrac{2}{5}\) + \(\left(\dfrac{1}{9}-1\dfrac{2}{5}+\dfrac{5}{4}\right)\)
-66 . \(\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{11}\right)\) + 124 . (-37) + 63 . (-124)
Tính bằng cách hợp lí :
A=\(\dfrac{5}{9}:\left(\dfrac{1}{11}-\dfrac{5}{2}\right)+\dfrac{5}{9}:\left(\dfrac{1}{15}-\dfrac{2}{3}\right)\)
B=\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)
a, \(\left(18\dfrac{1}{3}:\sqrt{225}+8\dfrac{2}{3}.\sqrt{\dfrac{49}{4}}\right)\): \(\left[\left(12\dfrac{1}{3}+8\dfrac{6}{7}\right)-\dfrac{\left(\sqrt{7}\right)^2}{\left(3\sqrt{2}\right)^2}\right]\): \(\dfrac{1704}{445}\)
b, \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{99.100}\)
c, \(\left(1-\dfrac{1}{2}\right)\)x\(\left(1-\dfrac{1}{3}\right)\)x.....x\(\left(1-\dfrac{1}{n+1}\right)\) (n ϵ N)
d, -66 x \(\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{11}\right)\) + 124 x -37 + 63 x -124
e, \(\dfrac{7}{4}\) x \(\left(\dfrac{33}{12}+\dfrac{3333}{2020}+\dfrac{333333}{303030}+\dfrac{33333333}{42424242}\right)\)
Tính giá trị biểu thức :
A=\(\left[\dfrac{1\dfrac{11}{31}.4\dfrac{3}{7}-\left(15-6\dfrac{1}{3}.\dfrac{2}{19}\right)}{4\dfrac{5}{6}+\dfrac{1}{6}\left(12-5\dfrac{1}{3}\right)}\right].\dfrac{31}{50}\)
Bài 1: Thực hiện phép tính:
\(A=\left(-\dfrac{1}{125}\right)^{11}:\left(\dfrac{1}{5}\right)^{32}\)
\(B=1+\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2+....+\left(\dfrac{1}{3}\right)^{2018}\)
\(C=\dfrac{16^3\cdot3^{10}+120\cdot6^9}{4^6\cdot3^{12}+6^{11}}\)
\(D=\left(\dfrac{0.4-\dfrac{2}{9}+\dfrac{2}{11}}{1.4-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-0.25+\dfrac{1}{5}}{1\dfrac{1}{6}-0.875+0.7}\right):\dfrac{2017}{2018}\)
\(E=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\)
\(G=\dfrac{\left(\dfrac{2}{5}\right)^7\cdot5^7+\left(2\dfrac{1}{4}\right)^3:\left(\dfrac{3}{16}\right)^3}{512+2^7\cdot5^2}:\dfrac{\left(\dfrac{1}{2}\right)^0}{\left(-1\right)^{2017}}\)
Mn ơi giúp e với ........ Em đang cần gấp giúp e với nha!!
Thank you mn nhiều nhiều.....