S1 = \(1+2+2^2+2^3+...+2^{62}+2^{63}\)
2 . S1 = \(2+2^2+2^3+2^4+...+2^{63}+2^{64}\)
2.S1 - S1 =\(\left(2+2^2+2^3+2^4+...+2^{63}+2^{64}\right)-\left(1+2+2^2+2^3+...+2^{62}+2^{63}\right)\)
S1 = \(2^{64}-1\)
\(S=1+2+2^2+2^3+...+2^{62}+2^{63}\)
\(2S=2+2^2+2^3+2^4+...+2^{63}+2^{64}\)
\(2S-S=2^{64}-1\)
\(S=2^{64}-1\)
S2 = \(1+3+3^2+3^3+...+3^{20}\)
3.S2 = \(3+3^2+3^3+3^4+...+3^{21}\)
3.S2 - S2 = \(\left(3+3^2+3^3+3^4+...+3^{21}\right)-\left(1+3+3^2+3^3+...+3^{20}\right)\)
2.S2 = \(3^{21}-1\)
S2 = \(\left(3^{21}-1\right):2\)
\(S=1+3+3^2+3^3+...+3^{20}\)
\(3S=3+3^2 +3^3+3^4+...+3^{20}+3^{21}\)
\(3S-S=3^{21}-1\)
\(2S=3^{21}-1\)
\(S=\frac{3^{21}-1}{2}\)
S3 = \(1+4+4^2+4^3+...+4^{43}\)
4.S3 = \(4+4^2+4^3+4^4+...+4^{44}\)
4.S3 - S3 = \(\left(4+4^2+4^3+4^4+...+4^{44}\right)-\left(1+4+4^2+4^3+...+4^{43}\right)\)
3.S3 = \(4^{44}-1\)
S3 = \(\left(4^{44}-1\right):3\)