a.
\(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4+y^4=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4-x^4+y^4\)
\(=\left(x^4-x^4\right)+\left(y^4-y^4\right)+\left(x^3y-x^3y\right)+\left(xy^3-xy^3\right)+\left(x^2y^2-x^2y^2\right)=0\)
b.
\(\left(2-x\right)\left(1+2x\right)+\left(1+x\right)-\left(x^4+x^3-5x^2-5\right)=2+4x-x-2x^2+1+x-x^4-x^3+5x^2+5\)
\(=-x^4-x^3+\left(5x^2-2x^2\right)+\left(4x-x+x\right)+\left(1+2+5\right)=-x^4-x^3+3x^2+4x+8\)
c.
\(\left(x^2-7\right)\left(x+2\right)-\left(2x-1\right)\left(x-14\right)+x\left(x^2-2x-22\right)+35=x^3+2x^2-7x-14-2x^2+28x+x-14+x^3-2x^2-22x+35\)
\(=\left(x^3+x^3\right)+\left(2x^2-2x^2\right)+\left(28x-22x-7x+x\right)+\left(35-14\right)=2x^3+21\)
a) \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4+y^4\)
= \(x^4+x^3y+x^2y^2+xy^3-x^3y-xy^3-x^2y^2-y^4-x^4+y^4=0\)
b) \(\left(2-x\right)\left(1+2x\right)+\left(1+x\right)-\left(x^4+x^3-5x^2-5\right)\)
= \(2+4x-x-2x^2+1+x-x^4-x^3+5x^2-5=-x^4-x^3-7x^2+4x-2\)
c) \(\left(x^2-7\right)\left(x+2\right)-\left(2x-1\right)\left(x-14\right)+x\left(x^2-2x-22\right)+35\)
=\(x^3+2x^2-7x-14-2x^2-16x-14+x^3-2x^2-22x+35=2x^3-2x^2-45x+7\)